Skip to main content
Log in

Diffuse approximation method for solving natural convection in porous media

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The diffuse approximation is presented and applied to natural convection problems in porous media. A comparison with the control volume-based finite-element method shows that, overall, the diffuse approximation appears to be fairly attractive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

H :

height of the cavities

I :

functional

K :

permeability

〈p(M i ,M)〉 :

line vector of monomials

p T :

p-transpose

M :

current point

Nu:

Nusselt number

Ri:

inner radius

Ro:

outer radius

Ra:

Rayleigh number

x, y :

cartesian coordinates

u, v :

velocity components

T :

temperature

〈αM〉 :

vector of estimated derivatives

α t :

thermal diffusivity

β :

coefficient of thermal expansion

σ:

practical aperture of the weighting function

ϕ:

scalar field

ω(M, M i ):

weighting function

Ψ:

streamfunction

ν:

kinematic viscosity

References

  1. Nayroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method. Diffuse approximation and diffuse elements,Comput. Mech. 10 (1992), 307–318.

    Google Scholar 

  2. Nayroles, B., Touzot, G. and Villon, P.: l'approximation diffuse,C.R. Acad. Sci. Paris, Série II,313 (1991), 293–296.

    Google Scholar 

  3. Baliga, B. R. and Patankar, S. V.: A new finite element formulation for convection diffusion problems,Numerical Heat Transfer 3 (1980), 393–409.

    Google Scholar 

  4. Baliga, B. R. and Patankar, S. V.: A control volume finite-element method for two-dimensional fluid flow and heat transfer,Numerical Heat Transfer 6 (1983), 245–261.

    Google Scholar 

  5. Prakash, C. and Patankar, S. V.: A control volume-based finite-element method for solving the Navier-Stokes equations using equal order velocity-pressure interpolation,Numerical Heat Transfer 8 (1985), 259–280.

    Google Scholar 

  6. Ni, J. and Beckermann, C.: Natural convection in a vertical enclosure filled with anisotropic porous media,J. Heat Transfer 113 (1991), 1033.

    Google Scholar 

  7. Shiralkar, G. S., Haajizadeh, M. and Tien, C. L.: Numerical study of high Rayleigh number convection in a porous enclosure,Numerical Heat Transfer 6 (1983), 223–234.

    Google Scholar 

  8. Kim, C. J. and Ro, S. T.: Numerical investigation on bifurcative natural convection in an air-filled horizontal annulus,Proc. Tenth Internat. Heat Transfer Conference, Brighton, U.K., Vol. 7, 1994, pp. 85–90.

    Google Scholar 

  9. Barbosa Mota, J. P. and Saatdjian, E.: Hysteresis en convection naturelle entre deux cylindres concentriques poreux, Société Française des Thermiciens, Colloque annuel, 1993.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prax, C., Sadat, H. & Salagnac, P. Diffuse approximation method for solving natural convection in porous media. Transp Porous Med 22, 215–223 (1996). https://doi.org/10.1007/BF01143516

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01143516

Key words

Navigation