Skip to main content
Log in

Axial tissue diffusion can account for the disparity between current models of hepatic elimination for lipophilic drugs

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

An assumption of previous models of hepatic elimination is that there is negligible axial diffusion in the liver. We show, by construction of a stochastic model and analysis of published data, that compounds which are readily diffusible and partitioned into hepatocytes may undergo axial tissue diffusion. The compounds most likely to be affected by axial tissue diffusion are the lipophilic drugs for which the cell membranes provide little resistance and which are highly extracted, thereby creating steep concentration gradients along the sinusoid at steady state. This phenomenon greatly modifies the availability of the compound under conditions of altered hepatic blood flow and protein binding. For moderately diffusible compounds, these relationships are similar to those predicted by the simplistic venous-equilibrium model. Hence, the paradoxical ability of the venous-equilibrium model to describe the steady-state kinetics of lipophilic drugs such as lidocaine, meperidine, and propranolol may be finally resolved. The effects of axial tissue diffusion and vascular dispersion on hepatic availability of drugs are compared. Vascular dispersion is of major importance to the availability of poorly diffusible compounds, whereas axial tissue diffusion becomes increasingly dominant for highly diffusive and partitioned substances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Surface area of contact between hepatocytes and sinusoidal plasma

c :

Concentration of compound

C :

Dimensionless concentration of compound

Cl H :

Hepatic clearance

Cl int :

Intrinsic clearance of liver or sinusoid

C ss :

Steady-state concentration

Cu ss :

Steady-state unbound concentration

cv :

Coefficient of variation

¯D N :

Dispersion coefficient

D N :

Dispersion number

D App :

Apparent dimensionless diffusion coefficient

D :

Dimensionless diffusion coefficient

¯D :

True diffusion coefficient

E :

Hepatic extraction fraction

F :

Hepatic availability

F * :

Fractional appearance

fu :

Fraction unbound

k :

First-order rate constant of metabolism

K :

Partition coefficient of unbound drug

L :

Length of sinusoid

n :

Number of sinusoidal classes

P in :

Influx permeability coefficient

P ef :

Efflux permeability coefficient

Q :

Hepatic blood flow

Qs :

Sinusoidal blood flow

R :

Remainder term in Bass equation

R o :

Constant rate of oral administration

R N :

Dimensionless efficiency number

t :

Time

¯t :

Mean residence time

t s :

Residence time of sinusoidal class

V :

Volume

v :

Sinusoidal blood velocity

x :

Distance along sinusoid

z :

Dimensionless distance along sinusoid

b:

Blood

d:

Drug (when discerning between drug and metabolite)

het:

In the presence of axial heterogeneity of metabolism

i :

Pertaining to the ith class of sinusoid

in:

Going into the liver

m:

Metabolite

met:

Sinusoidal section of metabolism of a particular compound

out:

Coming out of liver

t:

Tissue

u:

Unbound

α i :

Fraction of sinusoids in the rth flow class

Β i :

Fraction of sinusoids in the rth residence time class

δ :

Partial derivative

ɛ :

Coefficient of variation of sinusoidal metabolism and flow

ξ :

Fraction of sinusoid active in metabolism

σ2 :

Variance of the log-normal distribution

Ω:

Density function

References

  1. G. R. Wilkinson and D. G. Shand. A physiological approach to hepatic drug clearance.Clin. Pharmacol. Ther. 18:337–390 (1975).

    Google Scholar 

  2. S. M. Pond and T. N. Tozer. First-pass elimination. Basic concepts and clinical consequences.Clin. Pharmacokin. 9:1–25 (1984).

    Article  CAS  Google Scholar 

  3. M. Rowland, L. Z. Benet, and G. G. Graham. Clearance concepts in pharmacokinetics.J. Pharmacokin. Biopharm. 1:123–136 (1973).

    Article  CAS  Google Scholar 

  4. E. L. Forker and B. A. Luxon. Lumpers vs. distributers.Hepatology 5:1236–1237 (1985).

    Article  CAS  PubMed  Google Scholar 

  5. D. J. Edwards. Evidence favouring the venous equilibrium model for hepatic clearance of (S)-(-)-propranolol.J. Pharm. Sci. 73:1498–1499 (1984).

    Article  CAS  PubMed  Google Scholar 

  6. D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between the venous equilibrium and sinusoidal models of hepatic drug elimination in the isolated perfused rat liver by perturbation of propranolol protein binding.J. Pharmacol. Exp. Ther. 229:522–526 (1984).

    CAS  PubMed  Google Scholar 

  7. D. J. Morgan, D. B. Jones, and R. A. Smallwood. Modeling of substrate elimination by the liver: has the albumin receptor model superseded the well-stirred model?Hepatology 5:1231–1235 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. E. L. Forker and B. A. Luxon. Hepatic transport kinetics and plasma disappearance curves: Distributed modeling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    CAS  PubMed  Google Scholar 

  9. L. Bass. Flow-dependence of first-order uptake of substances by heterogenous perfused organs.J. Theoret. Biol. 86:365–376 (1980).

    Article  CAS  Google Scholar 

  10. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic drug clearance model: Comparison among the distributed, parallel-tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  11. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  12. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 2. Steady-state considerations—Influence of hepatic blood flow, binding within blood, and hepatocellular enzyme activity.J. Pharmacokin. Biopharm. 14:261–288 (1986).

    Article  CAS  Google Scholar 

  13. J. R. Gillette. Factors influencing drug metabolism.Ann. N. Y. Acad. Sci. 179:43–66 (1971).

    Article  CAS  PubMed  Google Scholar 

  14. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: the transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. R. A. Weisiger, C. M. Mendel, and R. R. Cavalieri. The hepatic sinusoid is not well-stirred: Estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver.J. Pharm. Sci. 75:233–237 (1986).

    Article  CAS  PubMed  Google Scholar 

  16. J. H. Anderson, R. C. Anderson, and L. S. Iben. Hepatic uptake of propranolol.J. Pharmacol. Exp. Ther. 206:172–180 (1978).

    CAS  PubMed  Google Scholar 

  17. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: discrimination between the “well-stirred” and “parallel-tube” models.J. Pharm. Pharmacol. 35:219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. K. S. Pang and M. Rowland. Hepatic clearance of drugs. II. Experimental evidence for acceptance of the “well-stirred” model over the “parallel tube” model using lidocaine in the perfused rat liverin situ preparation.J. Pharmacokin. Biopharm. 5:655–680 (1977).

    Article  CAS  Google Scholar 

  19. L. Bass, S. Keiding, K. Winkler, and N. Tygstrup. Enzymatic elimination of substrates flowing through the intact liver.J. Theoret. Biol. 61:393–409 (1976).

    Article  CAS  Google Scholar 

  20. A. Koo, I. Y. S. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Quart. J. Exp. Physiol. 60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. S. Keiding, S. Johansen, K. Winkler, K. TØnnesen, and N. Tygstrup. Michaelis-Menten kinetics of galactose elimination by the isolated perfused pig liver.Am. J. Physiol. 230:1302–1313 (1976).

    CAS  PubMed  Google Scholar 

  22. C. V. Greenway and F. J. Burczynski. Effects of liver blood flow on the hepatic uptake kinetics of galactose in anesthetized cats: Parallel tube model.Can. J. Physiol. Pharmacol. 65:1193–1199 (1987).

    Article  CAS  PubMed  Google Scholar 

  23. J. M. Pries, A. B. Staples, and R. F. Hanson. The effect of hepatic blood flow on taurocholate extraction by the isolated perfused rat liver.J. Lab. Clin. Med. 97:412–417 (1981).

    CAS  PubMed  Google Scholar 

  24. L. Bass and P. Robinson. Effects of capillary heterogeneity on rates of steady-state uptake of substances by the intact liver.Microvasc. Res. 22:43 (1981).

    Article  CAS  PubMed  Google Scholar 

  25. L. Bass, M. S. Roberts, and P. J. Robinson. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination.J. Theoret. Biol. 126:457–482 (1987).

    Article  CAS  Google Scholar 

  26. C. V. Greenway. Effects of hepatic blood flow on hepatic ethanol kinetics measured in cats and predicted from the parallel tube model.Can. J. Physiol. Pharmacol. 67:728–733 (1989).

    Article  CAS  PubMed  Google Scholar 

  27. M. R. Gray and Y. K. Tam. The series-compartment model for hepatic elimination.Drug Metab. Dispos. 15:27–31 (1987).

    CAS  PubMed  Google Scholar 

  28. C. A. Goresky. A linear method for determining liver sinusoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  29. C. A. Goresky and C. P. Rose. Blood-tissue exchange in liver and heart: the influence of heterogeneity of capillary transit times.Fed. Proc. 36:2629–2634 (1977).

    CAS  PubMed  Google Scholar 

  30. C. A. Goresky, D. S. Daly, S. Mishkin, and I. M. Arias. Uptake of labeled palmitate by the intact liver: role of intracellular binding sites.Am. J. Physiol. 234:E542-E553 (1978).

    CAS  PubMed  Google Scholar 

  31. L. Bass, P. Robinson, and A. J. Bracken. Hepatic elimination of flowing substrates: the distributed model.J. Theoret. Biol. 72:161–184 (1978).

    Article  CAS  Google Scholar 

  32. R. H. Kardon and R. G. Kessel. Three-dimensional organization of the hepatic microcirculation in the rodent as observed by scanning electron microscopy of corrosion casts.Gastroenterology 79:72–81 (1980).

    CAS  PubMed  Google Scholar 

  33. O. Ohtani. Microvascular organization of the liver as visualized by scanning electron microscopy of microvascular corrosion casts. In A. Koo, S. K. Lam, and L. H. Smaje (eds.),Microcirculation of the Alimentary Tract, World Scientific, Singapore, 1983, pp. 69–74.

    Google Scholar 

  34. O. Levenspiel and W. K. Smith. Notes on the diffusion-type model for the longitudinal mixing of fluids in flow.Chem. Eng. Sci. 6:227–233 (1957).

    Article  CAS  Google Scholar 

  35. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: comparison of stochastic models to describe residence time distributions and to predict the influence of drug distribution, enzyme heterogeneity, and systemic recycling on hepatic elimination.J. Pharmacokin. Biopharm. 16:41–83 (1988).

    Article  CAS  Google Scholar 

  36. J.-C. Glasinovic, M. Dumont, M. Duval, and S. Erlinger. Hepatocellular uptake of taurocholate in the dog.J. Clin. Invest. 55:419–426 (1975).

    Article  CAS  Google Scholar 

  37. J. Reichen and G. Paumgartner. Uptake of bile acids by perfused rat liver.Am. J. Physiol. 231:734–742 (1976).

    CAS  PubMed  Google Scholar 

  38. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination: 3. Application to metabolite formation and elimination kinetics.J. Pharmacokin. Biopharm. 14:289–308 (1986).

    Article  CAS  Google Scholar 

  39. M. S. Roberts, J. D. Donaldson, and D. R. Jackett. Availability predictions by hepatic elimination models for Michaelis-Menten kinetics.J. Pharmacokin. Biopharm. 17:687–719 (1989).

    Article  CAS  Google Scholar 

  40. J. B. Bassingthwaighte. A concurrent flow model for extraction during transcapillary passage.Circ. Res. 35:483–503 (1974).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. A. M. Lenhoff and E. N. Lightfoot. The effects of axial diffusion and permeability barriers on the transient response of tissue cylinders. I. Solution in transform space.J. Theoret. Biol. 97:663–677 (1982).

    Article  CAS  Google Scholar 

  42. A. M. Lenhoff and E. N. Lightfoot. The effects of axial diffusion and permeability barriers on the transient response of tissue cylinders. II. Solution in time domain.J. Theoret. Biol. 106:207–238 (1984).

    Article  CAS  Google Scholar 

  43. W. Perl and F. P. Chinard. A convection-diffusion model of indicator transport through an organ.Circ. Res. 22:273–298 (1968).

    Article  CAS  PubMed  Google Scholar 

  44. F. P. Chinard, C. N. Thaw, A. C. Delea, and W. Perl. Intrarenal volumes of distribution and relative diffusion coefficients of monohydric alcohols.Circ. Res. 25:343–357 (1969).

    Article  CAS  PubMed  Google Scholar 

  45. K. S. Pang and M. Rowland. Hepatic clearance of drugs. I. Theoretical considerations of a “well-stirred” model and a “parallel tube” model. Influence of hepatic blood flow, plasma and blood cell binding, and the hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  46. C. A. Goresky, E. R. Gordon, and G. Bach. Uptake of monohydric alcohols by liver: demonstration of a shared enzymic space.Am. J. Physiol. 244:G198-G214 (1983).

    CAS  PubMed  Google Scholar 

  47. N. A. Lassen and W. Perl.Tracer Kinetic Methods in Medical Physiology, Raven, New York, 1979, pp. 158–160.

    Google Scholar 

  48. B. A. Luxon and E. L. Forker. Simulation and analysis of hepatic indicator dilution curves.Am. J. Physiol. 243:G76-G89 (1982).

    CAS  PubMed  Google Scholar 

  49. K. V. Bury.Statistical Models in Applied Science, Wiley, New York, 1974, p. 279.

    Google Scholar 

  50. M. S. Roberts, S. Fraser, A. Wagner, and L. McLeod. Residence time distributions of solutes in the perfused rat liver using a dispersion model of hepatic elimination: 1. Effect of changes in perfusate flow and albumin concentration on sucrose and taurocholate.J. Pharmacokin. Biopharm. 18:209–234 (1990).

    Article  CAS  Google Scholar 

  51. M. S. Ching, D. J. Morgan, and R. A. Smallwood. Models of hepatic elimination: implications from studies of the simultaneous elimination of taurocholate and diazepam by isolated rat liver under varying conditions of binding.J. Pharmacol. Exp. Ther. 250:1048–1054 (1989).

    CAS  PubMed  Google Scholar 

  52. K. S. Pang and M. Rowland. Hepatic clearance of drugs. III. Additional experimental evidence supporting the “well-stirred” model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused liverin situ preparation.J. Pharmacokin. Biopharm. 5:681–699 (1977).

    Article  CAS  Google Scholar 

  53. D. J. Morgan and R. A. Smallwood. Clinical significance of pharmacokinetic models of hepatic elimination.Clin. Pharmacokin. 18:61–70 (1990).

    Article  CAS  Google Scholar 

  54. E. A. Swabb, J. Wei, and P. M. Gullino. Diffusion and convection in normal and neoplastic tissues.Cancer Res. 34:2814–2822 (1974).

    CAS  PubMed  Google Scholar 

  55. R. E. Safford, E. A. Bassingthwaighte, and J. B. Bassingthwaighte. Diffusion of water in cat ventricular myocardium.J. Gen. Physiol. 72:513–538 (1978).

    Article  CAS  PubMed  Google Scholar 

  56. C. V. Greenway and R. D. Stark. Hepatic vascular bed.Physiol. Rev. 51:23–65 (1971).

    CAS  PubMed  Google Scholar 

  57. A. M. Rappaport. The acinus — microvascular unit of the liver. In W. W. Laut (ed.),Hepatic Circulation in Health and Disease, Raven Press, New York, 1981, pp. 175–192.

    Google Scholar 

  58. D. J. Morgan and K. Raymond. Use of unbound drug concentration in blood to discriminate between two models of hepatic drug elimination.J. Pharm. Sci. 71:600–602 (1982).

    Article  CAS  PubMed  Google Scholar 

  59. D. B. Jones, M. S. Ching, R. A. Smallwood, and D. J. Morgan. A carrier-protein is not a prerequisite for avid hepatic elimination of highly bound compounds: a study of propranolol elimination by the isolated perfused rat liver.Hepatology 5:590–593 (1985).

    Article  CAS  PubMed  Google Scholar 

  60. K. S. Pang, J. A. Terrell, S. D. Nelson, K. F. Feuer, M.-J. Clements, and L. Endrenyi. An enzyme distributed system for lidocaine metabolism in the perfused rat liver preparation.J. Pharmacokin. Biopharm. 14:107–130 (1986).

    Article  CAS  Google Scholar 

  61. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (MULTI) for microcomputer.J. Pharm. Dyn. 4:879;885 (1981).

    Google Scholar 

  62. C.-P. Chen, V. T. Vu, and S. D. Cohen. Lidocaine uptake in isolated rat hepatocytes and effects ofdl-propranolol.Toxicol. Appl. Pharmacol. 55:162–168 (1980).

    Article  CAS  PubMed  Google Scholar 

  63. A. Rane, G. R. Wilkinson, and D. G. Shand. Prediction of hepatic extraction ratio fromin vitro measurement of intrinsic clearance.J. Pharmacol. Exp. Ther. 200:420–424 (1977).

    CAS  PubMed  Google Scholar 

  64. K. B. Bischoff, R. L. Dedrick, and D. S. Zaharko. Preliminary model for methotrexate pharmacokinetics.J. Pharm. Sci. 59:149–154 (1970).

    Article  CAS  PubMed  Google Scholar 

  65. J. R. Gillette. The importance of tissue distribution in pharmacokinetics.J. Pharmacokin. Biopharm. 1:497–520 (1973).

    Article  CAS  Google Scholar 

  66. R. A. Branch, A. S. Nies, and D. G. Shand. The disposition of propranolol. VIII. General implications of the effects of liver blood flow on elimination from the perfused rat liver.Drug Metab. Dispos. 1:687–690 (1973).

    CAS  PubMed  Google Scholar 

  67. D. G. Shand, D. M. Kornhauser, and G. R. Wilkinson. Effect of the route of administration and blood flow on hepatic drug elimination.J. Pharmacol. Exp. Ther. 195:424–432 (1975).

    CAS  PubMed  Google Scholar 

  68. W. M. Pardridge, R. Sakiyama, and G. Fierer. Transport of propranolol and lidocaine through the rat blood-brain barrier. Primary role of globulin-bound drug.J. Clin. Invest. 71:900–908 (1983).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. P.-M. Huet and B. Leclair. Hepatic handling of lidocaine during a single passage through the liver in dogs.Clin. Invest. Med. 4:7B (1981).

    Google Scholar 

  70. P.-M. Huet, G. Pomier-Layrargues, J.-P. Villeneuve, F. Varin, and A. Viallet. Intrahepatic circulation in liver disease.Semin. Liver Dis. 6:277–286 (1986).

    Article  CAS  PubMed  Google Scholar 

  71. D. B. Jones, G. W. Mihaly, R. A. Smallwood, L. K. Webster, D. J. Morgan, and N. P. Madsen. Differential effects of hypoxia on the disposition of propranolol and sodium taurocholate by the isolated perfused rat liver.Hepatology 4:461–466 (1984).

    Article  CAS  PubMed  Google Scholar 

  72. H. Ong, P. Du Souich, and C. Marchand.In vivo study of propranolol and metabolite(s) disposition in rat liver.Drug Metab. Dispos. 9:529–534 (1981).

    CAS  PubMed  Google Scholar 

  73. R. Grundin, P. Moldeus, H. Vadi, and S. Orrenius. Drug metabolism in isolated rat liver cells. In D. Y. Cooper, O. Rosenthal, R. Snyder, and C. Witmer (eds.),Cytochromes P450 and b 5; Structure, Function and Interaction, Plenum Press, New York, 1975, pp. 251–269.

    Google Scholar 

  74. J. A. Williams and D. M. Woodbury. Determination of extracellular space and intracellular electrolytes in rat liverin vivo.J. Physiol. 212:85–99 (1971).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  75. T. N. Calvey. The intracellular pH of the isolated perfused rat liver.Experientia 27:543 (1971).

    Article  CAS  PubMed  Google Scholar 

  76. G. SchÄfer. Interaction of biguanides with mitochondrial and synthetic membranes. The role of phospholipids as natural binding sites.Eur. J. Biochem. 45:57–66 (1974).

    Article  PubMed  Google Scholar 

  77. C. Di Francesco and M. H. Bickel. Membrane lipids as intracellular binders of chlorpromazine and related drugs.Chem.-Biol. Interact. 16:335–346 (1977).

    Article  CAS  PubMed  Google Scholar 

  78. A. Huunan-SeppÄlÄ. Binding of propranolol and chlorpromazine by mitochondrial membranes.Acta Chem. Scand. 26:2713–2733 (1972).

    Article  PubMed  Google Scholar 

  79. A. Finkelstein. Water and nonelectrolyte permeability of lipid bilayer membranes.J. Gen. Physiol. 68:127–135 (1976).

    Article  CAS  PubMed  Google Scholar 

  80. E. Tipping, B. Ketterer, and L. Christodoulides. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some uncharged molecules (2-acetylaminofluorene, 4-dimethylaminobenzene, oestrone and testosterone) that bind to ligandin and aminoazo-dye-binding protein A.Biochem. J. 180:319–326 (1979).

    CAS  PubMed Central  PubMed  Google Scholar 

  81. E. Tipping, B. Ketterer, and L. Christodoulides. Interactions of small molecules with phospholipid bilayers. Binding to egg phosphatidylcholine of some organic anions (bromosulphthalein, oestrone sulphate, haem and bilirubin) that bind to ligandin and aminoazodye-binding protein A.Biochem. J. 180:327–337 (1979).

    CAS  PubMed Central  PubMed  Google Scholar 

  82. E. Tipping and B. Ketterer. The influence of soluble binding proteins on lipophile transport and metabolism in hepatocytes.Biochem. J. 195:441–452 (1981).

    CAS  PubMed Central  PubMed  Google Scholar 

  83. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination kinetics in perfused rat liver.J. Pharmacol. Exp. Ther. 205:465–470 (1978).

    CAS  PubMed  Google Scholar 

  84. T. L. Whitsett, P. G. Dayton, and J. L. McNay. The effect of hepatic blood flow on the hepatic removal rate of oxyphenbutazone in the dog.J. Pharmacol. Exp. Ther. 177:246–255 (1971).

    CAS  PubMed  Google Scholar 

  85. D. G. Shand, R. H. Cotham, and G. R. Wilkinson. Perfusion-limited effects of plasma drug binding on hepatic extraction.Life Sci. 19:125–130 (1976).

    Article  CAS  PubMed  Google Scholar 

  86. W. A. Colburn. Albumin does not mediate the removal of taurocholate by the rat liver.J. Pharm. Sci. 71:373–374 (1982).

    Article  CAS  PubMed  Google Scholar 

  87. R. H. Smallwood, D. J. Morgan, G. W. Mihaly, D. B. Jones, and R. A. Smallwood. Effect of protein binding on elimination of taurocholate by isolated perfused rat liver: comparison of venous equilibrium, undistributed and distributed sinusoidal, and dispersion models.J. Pharmacokin. Biopharm. 16:377–396 (1988).

    Article  CAS  Google Scholar 

  88. L. Bass and S. M. Pond. The puzzle of rates of cellular uptake of protein-bound ligands. In A. Pecile and A. Rescigno (eds.),Pharmacokinetics, Plenum Press, London, 1988, pp. 245–269.

    Chapter  Google Scholar 

  89. R. A. Weisiger. Dissociation from albumin: a potentially rate-limiting step in the clearance of substances by the liver.Proc. Natl. Acad. Sci. USA 82:1563–1567 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. J. F. Wehner and R. H. Wilhelm. Boundary conditions of flow reactor.Chan. Eng. Sci. 6:89–93 (1956).

    Article  CAS  Google Scholar 

  91. R. A. Weisiger. Models of hepatic elimination.Hepatology 6:338–339 (1986).

    Article  CAS  PubMed  Google Scholar 

  92. C. V. Greenway, I. R. Innes, L. Pushka, G. D. Scott, and D. S. Sitar. Changes in hepatic blood volume on galactose and indocyanine green uptake by cat liver.Am. J. Physiol. 256:G524-G531 (1989).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by the National Health and Medical Research Council of Australia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rivory, L.P., Roberts, M.S. & Pond, S.M. Axial tissue diffusion can account for the disparity between current models of hepatic elimination for lipophilic drugs. Journal of Pharmacokinetics and Biopharmaceutics 20, 19–61 (1992). https://doi.org/10.1007/BF01143185

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01143185

Key words

Navigation