Skip to main content
Log in

Availability predictions by hepatic elimination models for Michaelis-Menten kinetics

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Numerical methods have been used to compare the availability predictions of a number of hepatic elimination models when Michaelis-Menten kinetics is operative. Propranolol and galactose were used as model compounds. Lower availabilities were predicted by the dispersion model than by a segregated distribution model for both compounds. The differences in the predictions were most pronounced for models corresponding to a large variation in solute residence times in the liver. The predictions of the tank-in-series, dispersion model with mixed boundary conditions and dispersion model with Dankwerts boundary conditions were similar over all concentrations studied. Changes in blood flow and protein binding provided little discrimination between the model predictions. It is concluded that micromixing of blood between sinusoids and the anatomical sites of mixing are important determinants of availability when liver eliminating enzymes are partially saturated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

Cross-sectional area

C:

Concentration

C :

Concentration normalized to input concentration

CV 2 :

Normalized variance

ĉ :

Logarithmic mean concentration

CL int :

Intrinsic clearance

DN :

Dispersion number

f(t) :

Output concentration-time profile after a bolus input

F:

Availability

fu :

Fraction unbound

g(L):

Distribution of tube lengths function

G(t) :

Cumulative (total) fraction of dose leaving liver

k(c) :

Rate estimation constant per unit volume

K m :

Michaelis constant

L :

Length of liver

n :

Number of tanks

P:

Permeability of hepatocyte to drug

Q:

Blood flow rate

R N :

Efficiency number

t :

Time

¯t :

Mean residence time

T :

Dimensionless time (=t/¯t)

ν :

Mean blood velocity

V :

Volume or volume of distribution

Vmax :

Maximum velocity

z :

Distance within liver

Z :

Fractional distance within liver (z/L)

b :

based on measurement in blood

c:

based on measurement in cell

in:

input

out:

exit

o −2 :

Variance

ρ :

Axial variation in enzyme activity

∂:

Partial derivative

:

Fraction of sinusoids in a given class

References

  1. M. S. Roberts and M. Rowland. Hepatic elimination — dispersion model.J. Pharm. Sci. 74:585–587 (1985).

    Article  CAS  PubMed  Google Scholar 

  2. K. S. Pang and M. Rowland. Hepatic clearance of drugs. 1. Theoretical considerations of a well-stirred model and a parallel-tube model. Influence of hepatic blood flow, plasma and blood cell binding and hepatocellular enzymatic activity on hepatic drug clearance.J. Pharmacokin. Biopharm. 5:625–653 (1977).

    Article  CAS  Google Scholar 

  3. L. Bass, P. J. Robinson, and A. J. Bracken. Hepatic elimination of flowing substances: The distributed model.J. Theor. Biol. 72:161–184 (1978).

    Article  CAS  PubMed  Google Scholar 

  4. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 1. Formulation of the model and bolus considerations.J. Pharmacokin. Biopharm. 14:227–260 (1986).

    Article  CAS  Google Scholar 

  5. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 2. Steady-state considerations. Influence of blood flow, protein binding and hepatocellular enzymatic activity.J. Pharmacokin. Biopharm. 4:261–288 (1986).

    Article  Google Scholar 

  6. M. S. Roberts and M. Rowland. A dispersion model of hepatic elimination. 3. Application to metabolite formation and elimination kinetics.J. Pharmacokin. Biopharm. 14:289–307 (1986).

    Article  CAS  Google Scholar 

  7. A. B. Ahmad, P. N. Bennett, and M. Rowland. Models of hepatic drug clearance: Discrimination between the well-stirred and parallel-tube models.J. Pharm. Pharmacol. 35: 219–224 (1983).

    Article  CAS  PubMed  Google Scholar 

  8. D. B. Jones, D. J. Morgan, G. W. Mihaly, L. K. Webster, and R. A. Smallwood. Discrimination between the venous equilibrium and sinusoidal models of hepatic drug elimination in the isolated perfused rat liver by perturbation of propranolol protein binding.J. Pharmacol. Exp. Ther. 229: 522–526 (1984).

    CAS  PubMed  Google Scholar 

  9. M. Rowland, D. Leitch, G. Fleming, and B. Smith. Protein binding and hepatic clearance: Distribution between models of hepatic clearance with diazepam, a drug of high intrinsic clearance, in the isolated perfused rat liver preparation.J. Pharmacokin. Biopharm. 12: 129–147 (1984).

    Article  CAS  Google Scholar 

  10. K. S. Pang and J. R. Gillette. Kinetics of metabolite formation and elimination in the perfused rat liver preparation: Differences between the elimination of preformed acetaminophen and acetaminophen formed from phenacetin.J Pharmacol. Exp. Ther. 207:178–194 (1978).

    CAS  PubMed  Google Scholar 

  11. K. S. Pang and M. Rowland. Hepatic clearance of drugs. III. Additional experimental evidence supporting the well-stirred model, using metabolite (MEGX) generated from lidocaine under varying hepatic blood flow rates and linear conditions in the perfused liver in situ preparation.J. Pharmacokin. Biopharm. 5:681–699 (1977).

    Article  CAS  Google Scholar 

  12. M. S. Roberts and M. Rowland. Correlation between in-vitro microsomal enzyme activity and whole organ hepatic elimination kinetics: Analysis with a dispersion model.J. Pharm. Pharmacol. 38:117–181 (1986).

    Article  Google Scholar 

  13. L. Bass. Flow dependence of first-order uptake of substances by heterogeneous perfused organs.J. Theor. Biol. 86:365–376 (1980).

    Article  CAS  PubMed  Google Scholar 

  14. L. Bass, M. S. Roberts, and P. J. Robinson. On the relation between extended forms of the sinusoidal perfusion and of the convection-dispersion models of hepatic elimination.J. Theor. Biol. 126: 457–482 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Roberts, J. D. Donaldson, and M. Rowland. Models of hepatic elimination: Comparison of stochastic models to describe residence time distribution and to predict the influence of drug distribution, enzyme heterogeneity and systemic recycling on hepatic elimination.J. Pharmacokin. Biopharm. 16: 41–84 (1988).

    Article  CAS  Google Scholar 

  16. J. J. Gumucio and D. L. Miller. Functional implications of liver cell heterogeneity.Gastroenterology 60:393–402 (1981).

    Google Scholar 

  17. S. Keiding and K. Priisholm. Current models of hepatic pharmacokinetics: Flow effects on kinetic constants of ethanol elimination in perfused rat liver.Biopharm. Pharmacol. 33: 3209–3312 (1984).

    CAS  Google Scholar 

  18. S. Keiding and E. Chiarantini. Effect of sinusoidal perfusion on galactose elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 205:465–470 (1978).

    CAS  PubMed  Google Scholar 

  19. S. Keiding and E. Steiness. Flow dependence of propranolol elimination in perfused rat liver.J. Pharmacol. Exp. Ther. 230:474–477 (1984).

    CAS  PubMed  Google Scholar 

  20. E. L. Forker and B. Luxon. Hepatic transport kinetics and plasma disappearance curves: Distributed modelling versus conventional approach.Am. J. Physiol. 235:E648-E660 (1978).

    CAS  PubMed  Google Scholar 

  21. O. Levenspeil.Chemical Reaction Engineering J. Wiley and Sons, New York, 1976, pp. 253–315.

    Google Scholar 

  22. R. A. Weisiger. Dissociation from albumin: A potentially rate-limiting step in the clearance of substances by the liver.Proc. Natl. Acad. Sci. USA 82:1563–1567 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. R. A. Weisiger, C. M. Mendel, and R. C. Cavalieri. The hepatic sinusoid is not well-stirred. Estimation of the degree of axial mixing by analysis of lobular concentration gradients formed during uptake of thyroxine by the perfused rat liver.J. Pharm. Sci. 75: 233–237 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. K. S. Pang and R. N. Stillwell. An understanding of the role of enzyme localisation of the liver on metabolite kinetics: A computer simulation.J. Pharmacokin. Biopharm. 11:451–468 (1983).

    Article  CAS  Google Scholar 

  25. K. S. Pang, J. A. Terrell, S. D. Nelson, K. F. Feuer, M. Clements, and L. Edrenyi. Later enzyme heterogeneity. An enzyme-distributed system for lidocaine metabolism in the perfused rat liver preparation.J. Pharmacokin. Biopharm. 14:107–130 (1986).

    Article  CAS  Google Scholar 

  26. D. G. Shand and J. A. Oates. Metabolism of propranolol by rat liver microsomes and its inhibition by phenothiazone and tricyclic antidepressant drugs.Biochem. Pharmacol. 20:1720–1723 (1971).

    Article  CAS  PubMed  Google Scholar 

  27. A. Rane, G. R. Wilkinson, and D. G. Shand. Prediction of hepatic extraction ratio from in vitro measurement of intrinsic clearance.J. Pharmacol. Exp. Ther. 200:420–424 (1977).

    CAS  PubMed  Google Scholar 

  28. G. Dalquist, A. Bjorck, and N. Anderson.Numerical Methods, Prentice Hall, Englewood Cliffs, N.J., 1974.

    Google Scholar 

  29. C. A. Goresky. A linear method for determining liver sinsuoidal and extravascular volumes.Am. J. Physiol. 204:626–640 (1963).

    CAS  PubMed  Google Scholar 

  30. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: The concentrative transport of rubidum-86.J. Clin. Invest. 52:975–990 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. C. A. Goresky, G. G. Bach, and B. E. Nadeau. On the uptake of materials by the intact liver: The transport and net removal of galactose.J. Clin. Invest. 52:991–1009 (1973).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. C. A. Goresky. Kinetic interpretation of hepatic multiple indicator dilution studies.Am. J. Physiol. 245:G1-G12 (1983).

    CAS  PubMed  Google Scholar 

  33. C. A. Goresky, E. R. Gordon, and G. G. Bach. Uptake of monohydric alcohols by liver: Demonstration of a shared enzymatic space.Am. J. Physiol. 244:G198-G214 (1983).

    CAS  PubMed  Google Scholar 

  34. G. F. Froment and K. B. Bischoff.Chemical Reactor Analysis and Design, Wiley, New York, 1979, pp. 592–661.

    Google Scholar 

  35. L. Bass and S. Keiding. Physiologically based models and strategic experiments in hepatic pharmoacology.Biochem. Pharmacol. 37:1425–1431 (1988).

    Article  CAS  PubMed  Google Scholar 

  36. L. Bass. Saturation kinetics in hepatic drug removal: A statistical approach to functional heterogeneity.Am. J. Physiol. 244:G583-G589 (1983).

    CAS  PubMed  Google Scholar 

  37. K. S. Pang and J. A. Terrell. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolising enzymes in rats.J. Pharmacol. Exp. Ther. 216:339–346 (1981).

    CAS  PubMed  Google Scholar 

  38. H. Vilstrup, S. Keiding, and P. B. Vendsborg. Kinetics of galactose uptake by perfused rat livers: Applicability of a family of models.J. Theor. Biol. 101:335-335–344 (1983).

    Article  Google Scholar 

  39. Y. Sawada, Y. Sugiyama, Y. Miyamoto, T. Iga, and M. Hanano. Hepatic drug clearance model: comparison among the distributed, parallel tube and well-stirred models.Chem. Pharm. Bull. 33:319–326 (1985).

    Article  CAS  PubMed  Google Scholar 

  40. E. L. Forker and B. A. Luxon. Hepatic transport kinetics: Effect of anatomic and metabolic heterogeneity on estimates of the average transfer coefficients.Am. J. Physiol. 243:G532-G540 (1982).

    CAS  PubMed  Google Scholar 

  41. S. Miyauchi, T. Sugiyama, Y. Sawada, K. Morita, T. Iga, and M. Hanano. Kinetics of hepatic transport of 4-methylumbelliferone in rats. Analysis by multiple indicator dilution method.J. Pharmacokin. Biopharm. 15:25–38 (1987).

    Article  CAS  Google Scholar 

  42. A. Koo, I. Y. S. Liang, and K. K. Cheng. The terminal hepatic microcirculation in the rat.Q. J. Exp. Physiol. 60:261–266 (1975).

    Article  CAS  PubMed  Google Scholar 

  43. P. J. Robinson, L. Bass, S. M. Pond, M. S. Roberts, and J. G. Wagner. Clinical applicability of current pharmacokinetic models: Splanchnic elimination of 5-fluorouracil in cancer patients.J. Pharmacokin. Biopharm. 16:229–249 (1988).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

One of us (M.S.R.) wishes to thank the National Health and Medical Research Council of Australia (NHMRC) and the Dean's Fund (MRC, NZ).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, M.S., Donaldson, J.D. & Jackett, D. Availability predictions by hepatic elimination models for Michaelis-Menten kinetics. Journal of Pharmacokinetics and Biopharmaceutics 17, 687–719 (1989). https://doi.org/10.1007/BF01062125

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01062125

Key words

Navigation