Skip to main content
Log in

A comparison between multireference CI and effective medium theories for diatomic FeN

  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Summary

Internally contracted multireferece CI calculations have been performed for the diatomic molecules FeN, CrN and CrO. For the latter two molecules the calculated dissociation energies are 3.18 eV (3.9±0.2 eV) and 4.09 eV (4.5±0.1 eV) respectively, where the corresponding experimental results are given in parentheses. It is argued that the correct value for CrN must lie in the lower end of the range given by experiment or perhaps slightly below. The best calculated result for FeN, for which no experimental result exists, is 1.69 eV. This value can be compared to an older CI value of 0.9 eV and a recent result of 5.25 eV obtained by an effective medium approach. Based on the results for all the three molecules treated here the correct dissociation energy of FeN can be estimated to be about 2.1 eV. The relevance of the present results for modelling chemical reactions in the regions around on-top positions of transition metal surfaces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Panas I, Schüle J, Siegbahn, P, Wahlgren U (1988) Chem Phys Lett 149:265

    Google Scholar 

  2. Kress JD, DePristo AE (1987) J Chem Phys 87:4700; Lee C-Y, DePristo AE (1986) J Chem Phys 85:4161

    Google Scholar 

  3. Truong TN, Truhlar DG, Garrett BC (1989) J Phys Chem 93:8227

    Google Scholar 

  4. Andzelm J, Salahub DR (1986) Int J Quant Chem 29:1091

    Google Scholar 

  5. Seigbahn PEM, Blomberg MRA, Bauschlicher CW Jr (1984) J Chem Phys 81:2103

    Google Scholar 

  6. Siegbahn P, Blomberg M, Panas I, Wahlgren U (1989) Theor Chim Acta 75:143

    Google Scholar 

  7. Siegbahn PEM, Wahlgren U In: Schustorovich E (ed) Reaction Energetics on Metal Surfaces: Theory and Application. VHC Publishers, New York, 1990

    Google Scholar 

  8. Bagus PS, Bauschlicher CW Jr, Nelin CJ, Laskowski BC, Seel M (1984) J Chem Phys 81:3594

    Google Scholar 

  9. Raeker TJ, DePristo AE (1990) Surf Sci 235:84

    Google Scholar 

  10. Huber KP, Herzberg G, Molecular Spectra and Molecular Structure, Vol. IV, van Nostrand-Reinhold, New York, 1979

    Google Scholar 

  11. Siegbahn PEM, Blomberg MRA (1984) Chem Phys 87:189

    Google Scholar 

  12. Siegbahn PEM (1983) Int J Quant Chem 23:1869

    Google Scholar 

  13. Langhoff SR, Bauschlicher CW Jr, Pettersson LGM, Siegbahn PEM (1989) Chem Phys 132:49

    Google Scholar 

  14. Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803; The presently used program was written by Per Siegbahn

    Google Scholar 

  15. Kant A, Strauss B (1966) J Chem Phys 45:3161

    Google Scholar 

  16. Bauschlicher CW Jr, Nelin CJ, Bagus PS (1985) J Chem Phys 82:3265

    Google Scholar 

  17. Jasien PG, Stevens WJ (1988) Chem Phys Lett 147:72

    Google Scholar 

  18. Steimle TC, Nachman DF, Shirley JE, Bauschlicher CW Jr, Langhoff SR (1989) J Chem Phys 91:2049

    Google Scholar 

  19. Martin RL (1983) J Phys Chem 87:750; see also Cowan RD, Griffin DC (1976) J Opt Soc Am 66:1010

    Google Scholar 

  20. Wachters AJH (1970) J Chem Phys 52:1033

    Google Scholar 

  21. Hay PJ (1977) J Chem Phys 66:4377

    Google Scholar 

  22. Raffenetti RC (1973) J Chem Phys 58:4452

    Google Scholar 

  23. Almlöf J, Taylor PR (1987) J Chem Phys 86:4070

    Google Scholar 

  24. Huzinaga S (1965) J Chem Phys 42:1293

    Google Scholar 

  25. Roos BO, Taylor PR, Siegbahn PEM (1980) Chem Phys 48:157

    Google Scholar 

  26. Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413

    Google Scholar 

  27. Balducci G, Gigli G, Guido M (1981) J Chem Soc Faraday Trans 2, 77:1107

    Google Scholar 

  28. Grimley RT, Burns RP, Inghram MG (1961) J Chem Phys 34:664

    Google Scholar 

  29. Pettersson LGM, Siegbahn PEM, Åkeby H (to be published)

  30. Srivastava RD, Farber M (1973) High Temperature Science 5:489

    Google Scholar 

  31. Shim I, Gingerich KA (1984) J Chem Phys 80:5107

    Google Scholar 

  32. Blomberg MRA, Siegbahn PEM, Nagashima U, Wennerberg J (1991) J Am Chem Soc 113:476

    Google Scholar 

  33. Murad E (1980) J Chem Phys 73:1381

    Google Scholar 

  34. Krauss M, Stevens WJ (1985) J Chem Phys 82:5584

    Google Scholar 

  35. Blomberg MRA, Lebrilla CB, Siegbahn PEM (1988) Chem Phys Lett 150:522

    Google Scholar 

  36. Andzelm J, Salahub DR (1986) Int J Quant Chem 29:1091

    Google Scholar 

  37. Müller, JE, Wuttig M, Ibach H (1986) Phys Rev Lett 56:1583

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blomberg, M.R.A., Siegbahn, P.E.M. A comparison between multireference CI and effective medium theories for diatomic FeN. Theoret. Chim. Acta 81, 365–374 (1992). https://doi.org/10.1007/BF01134861

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01134861

Key words

Navigation