Skip to main content
Log in

Dielectric and13C NMR studies of the carbon monoxide clathrate hydrate

  • Published:
Journal of inclusion phenomena and molecular recognition in chemistry Aims and scope Submit manuscript

Abstract

The structure I clathrate hydrate of carbon monoxide has been studied using dielectric measurements and13C NMR spectroscopy. Broad, weak dielectric absorption curves with maxima at 2.2–3.8 K yieldE a = 0.14 kJ mol−1 for the average Arrhenius activation energy associated with the reorientation of the low polarity guest. Except for H2S this represents the fastest reorienting polar guest known among the clathrate hydrates. The low temperature dielectric absorption curves can best be fitted with a Cole-Davidson asymmetric distribution of relaxation times and activation energies (withθ = 0.06 at 4 × 106 Hz), which at 107 Hz has been resolved into a double symmetric distribution of discrete relaxation times for CO in the small and large cages. The cross-polarization magic angle spinning13C NMR spectra indicate identical chemical shifts for CO in the small and large cages, in contrast to other hydrates. The static spectra show that the CO molecules undergo anisotropic reorientation in the large cages and that there is still considerable mobility at 77 K. One possible model for the anisotropic motion has the CO rapidly moving among sites over each of the 14 faces of the cage with the CO axis orientated towards the cage centre. The cage occupancy ratio at 220 K,θ s/θ L = 1.11, indicates slightly greater preference of CO for the small cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Davidson, M. A. Desando, S. R. Gough, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, and J. S. Tse:Nature 328, 418 (1987).

    Google Scholar 

  2. D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. S. Tse, and B. M. Powell:Nature 311, 142 (1984).

    Google Scholar 

  3. J. S. Tse, Y. P. Handa, C. I. Ratcliffe, and B. M. Powell:J. Incl. Phenom. 4, 235 (1986).

    Google Scholar 

  4. D. W. Davidson, Y. P. Handa, and J. A. Ripmeester;J. Phys. Chem. 90, 6549 (1986).

    Google Scholar 

  5. D. W. Davidson, Y. P. Handa, C. I. Ratcliffe, J. A. Ripmeester, J. S. Tse, J. R. Dahn, F. Lee, and L. D. Calvert:Mol. Cryst. Liq. Cryst. 141, 141 (1986).

    Google Scholar 

  6. A. Bar-Nun, G. Herman, D. Laufer, and M. L. Rappaport:Icarus 63, 317 (1985).

    Google Scholar 

  7. G. J. Consolmagno:J. Phys. Chem. 87, 4204 (1983).

    Google Scholar 

  8. J. Klinger:J. Phys. Chem. 87, 4209 (1983).

    Google Scholar 

  9. A. H. Delsemme:J. Phys. Chem. 87, 4214 (1983).

    Google Scholar 

  10. S. Wyckoff:J. Phys. Chem. 87, 4234 (1983).

    Google Scholar 

  11. J. M. Greenberg, C.E.P.M. van de Bult, and L. J. Allamandola:J. Phys. Chem. 87, 4243 (1983).

    Google Scholar 

  12. D. F. Strobel:Intl. Rev. Phys. Chem. 3, 145 (1983).

    Google Scholar 

  13. S. L. Miller, inIces in the Solar System, eds. J. Klinger, D. Benest, A. Dollfus, and R. Smoluchowski, Reidel, Dordrecht, 1985, p. 59.

    Google Scholar 

  14. J. I. Lunine and D. J. Stevenson:Astrophys. J. Suppl. Ser. 58, 493 (1985).

    Google Scholar 

  15. D. W. Davidson, C. I. Ratcliffe, and J. A. Ripmeester:J. Incl. Phenom. 2, 239 (1984).

    Google Scholar 

  16. C. I. Ratcliffe and J. A. Ripmeester:J. Phys. Chem. 90, 1259 (1986).

    Google Scholar 

  17. M. J. Collins, D. W. Davidson, C. I. Ratcliffe, and J. A. Ripmeester: inDynamics of Molecular Crystals, ed. J. Lascombe, Elsevier Science Publishers B.V., Amsterdam, 1987, p. 497.

    Google Scholar 

  18. S. R. Gough:J. Phys. E. Sci. Instrum. 15, 530 (1982).

    Google Scholar 

  19. A. Pines, M. C. Gibby, and J. S. Waugh:J. Chem. Phys. 59, 569 (1973).

    Google Scholar 

  20. A. L. McClellan:Tables of Experimental Dipole Moments, vol. 2, Rahara Enterprises, El Cerrito, California, 1974.

    Google Scholar 

  21. B. E. Read and G. Williams:Trans. Faraday Soc. 57, 1979 (1961).

    Google Scholar 

  22. D. W. Davidson and J. A. Ripmeester: inInclusion Compounds, eds. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, Academic Press, London, vol. 3, 1984, Ch. 3.

    Google Scholar 

  23. K. S. Cole and R. H. Cole:J. Chem. Phys. 9, 314 (1949).

    Google Scholar 

  24. R. M. Fuoss and J. G. Kirkwood:J. Am. Chem. Soc. 63, 385 (1941).

    Google Scholar 

  25. D. W. Davidson and R. H. Cole:J. Chem. Phys. 18, 1417 (1951).

    Google Scholar 

  26. S. Liu and M. S. Conradi:Solid State Commun. 49, 177 (1984).

    Google Scholar 

  27. K. R. Nary, P. L. Kuhns, and M. S. Conradi:Phys. Rev. B 26, 3370 (1982).

    Google Scholar 

  28. N. R. Grey and L. A. K. Staveley:Mol. Phys. 7, 83 (1983).

    Google Scholar 

  29. S. R. Gough, S. K. Garg, J. A. Ripmeester, and D. W. Davidson:J. Phys. Chem. 81, 2158 (1977).

    Google Scholar 

  30. S. R. Gough, R. E. Hawkins, B. Morris, and D. W. Davidson:J. Phys. Chem. 77, 2969 (1973).

    Google Scholar 

  31. A. Budd:Physik Z. 39, 706 (1938).

    Google Scholar 

  32. K. Bergman, D. M. Roberti, and C. P. Smyth:J. Phys. Chem. 5, 665 (1960).

    Google Scholar 

  33. J. H. Van Vleck:The Theory of Electric and Magnetic Susceptibilities, Oxford Press, New York, 1948.

    Google Scholar 

  34. L. Onsager:J. Am. Chem. Soc. 58, 1486 (1936).

    Google Scholar 

  35. D. A. Ackerman, D. Moy, R. C. Potter, and A. C. Anderson:Phys. Rev. B 23, 3886 (1981).

    Google Scholar 

  36. J. A. Ripmeester and C. I. Ratcliffe:J. Phys. Chem. 92, 337 (1988).

    Google Scholar 

  37. M. Mehring: inHigh Resolution NMR Spectroscopy in Solids, NMR Basic Principles and Progress, Eds. P. Diehl, E. Fluck, and R. Kosfeld, Springer-Verlag, New York, 1976, vol. 2, p 21.

    Google Scholar 

  38. A. J. Beeler, A. M. Orendt, D. M. Grant, P. W. Cutts, J. Michl, K. W. Zilm, J. W. Downing, J. C. Facelli, M. S. Schindler, and W. Kutzelnigg:J. Am. Chem. Soc. 106, 7672 (1984).

    Google Scholar 

  39. A. A. V. Gibson, T. A. Scott, and E. Fukushima:J. Magn. Reson. 27, 29 (1977).

    Google Scholar 

  40. J. S. Tse: National Research Council Canada, personal communication.

  41. Tables of Interatomic Distances, Chemical Society Special Publication No. 11, London, 1958, M117.

  42. F. A. Cotton and G. Wilkinson:Advanced Inorganic Chemistry, 2nd Edition, Interscience, New York, 1966, p. 115.

    Google Scholar 

  43. D. W. Davidson: inWater, a Comprehensive Treatise, ed. F. Franks, Plenum, New York, 1973, vol. 2, p. 130.

    Google Scholar 

  44. R. J. Wittebort, E. T. Olejniczak, and R. G. Griffin:J. Chem. Phys. 84, 5411 (1987).

    Google Scholar 

  45. C. I. Ratcliffe:J. Phys. Chem. 91, 6464 (1987).

    Google Scholar 

  46. G. A. Jeffrey: inInclusion Compounds, eds. J. L. Atwood, J. E. D. Davies, and D. D. MacNicol, Academic Press, London, Vol. 1, 1984, Ch. 5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr D. W. Davidson in honor of his great contributions to the sciences of inclusion phenomena.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desando, M.A., Handa, Y.P., Hawkins, R.E. et al. Dielectric and13C NMR studies of the carbon monoxide clathrate hydrate. J Incl Phenom Macrocycl Chem 8, 3–16 (1990). https://doi.org/10.1007/BF01131283

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01131283

Key words

Navigation