Skip to main content
Log in

How Does the Guest—Host Hydrogen Bonding Affect the Thermal Properties of Clathrate Hydrates?

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

Herein, molecular dynamics simulations are performed to study the effect of the guest-host hydrogen bonding on the thermal properties, such as isothermal compressibility, isobaric thermal expansivity, and heat capacity, in the sI clathrate hydrate phases of trimethylene oxide (TMO), ethylene oxide (EO), and formaldehyde (FA) as polar guests. The results of these simulations are compared with those of nonpolar guests with analogous structures, cyclobutane (CB), cyclopropane (CP), and ethane (Et). Binary hydrates are constructed with the above guests in large 14-sided cages and methane placed in small 12-sided cages of the structure of sI clathrate hydrates. We present the temperature dependence of the lattice parameter and also the pressure dependence of the unit cell volume for variety guests with different sizes, polarity, and guest-host hydrogen bonding capability. The lattice parameters for some of the guest species obtained in this work are in good agreement with experimental values. The oxygen atom of the formaldehyde carbonyl group and the ether oxygen atoms of TMO and EO molecules can form hydrogen bonds with sI large cage water hydrogen atoms while CB, CP and Et molecules do not. The consequences of the guest-host hydrogen bonding on the isothermal compressibility, thermal expansivity, and heat capacity of the clathrate are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. MacDonald. Annu. Rev. Energy, 1990, 15, 53–83.

    Google Scholar 

  2. B. Tohidi, A. Danesh, A. Todd, and R. Burgass. Chem. Eng. Sci., 1997, 52, 3257–3263.

    CAS  Google Scholar 

  3. E. D. Sloan and C. A. Koh. Clathrate Hydrates of Natural Gases. 3rd ed. CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2008.

    Google Scholar 

  4. S. Takeya, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, H. Shoji, V. Soloviev, K. Wallmann, and N. Biebow. Chem. Eng. Sci., 2006, 61, 2670–2674.

    CAS  Google Scholar 

  5. S. Alavi, K. Udachin, and J. A. Ripmeester. Chem. Eur. J., 2010, 16, 1017–1025.

    CAS  PubMed  Google Scholar 

  6. K. Hester, Z. Huo, A. Ballard, C. Koh, K. Miller, and E. Sloan. J. Phys. Chem. B, 2007, 111, 8830–8835.

    CAS  PubMed  Google Scholar 

  7. S. T. John. J. Inclusion Phenom. Mol. Recognit. Chem., 1990, 8, 25–32.

    Google Scholar 

  8. V. R. Belosludov, T. M. Inerbaev, O. S. Subbotin, R. V. Belosludov, J.-I. Kudoh, and Y. J. Kawazoe. Supramol. Chem., 2002, 2, 453–458.

    CAS  Google Scholar 

  9. S. Alavi, J. Ripmeester, and D. Klug. J. Chem. Phys., 2006, 124, 014704.

    Google Scholar 

  10. K. Murayama, S. Takeya, S. Alavi, and R Ohmura. J. Phys Chem. C, 2014, 118, 21323–21330.

    CAS  Google Scholar 

  11. F. Ning, K. Glavatskiy. Z. Ji, S. Kjelstrup, and T. H. Vlugt. Phys. Chem. Chem. Phys., 2015, 17, 2869–2883.

    CAS  PubMed  Google Scholar 

  12. T. Ikeda, S. Mae, O. Yamamuro, T. Matsuo, S. Ikeda, and R. M. Ibberson. J. Phys. Chem. A, 2000, 104, 10623–10630.

    CAS  Google Scholar 

  13. B. Chazallon and W. F. Kuhs. J. Chem. Phys., 2002, 117, 308–320.

    CAS  Google Scholar 

  14. B. Chakoumakos, C. Rawn, A. Rondinone, L. Stern, S. Circone, S. Kirby, Y. Ishii, C. Jones, and B. Toby. Can. J. Phys., 2003, 8, 183–189.

    Google Scholar 

  15. O. Yamamuro, Y. Handa, M. Oguni, and H. Suga. J. Inclusion Phenom. Mol. Recognit. Chem., 1990, 8, 45–58.

    CAS  Google Scholar 

  16. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga. J. Inclusion Phenom. Mol. Recognit. Chem., 1988, 6, 307–318.

    CAS  Google Scholar 

  17. O. Yamamuro, M. Oguni, T. Matsuo, and H. Suga. Solid State Commun., 1987, 62, 289–292.

    CAS  Google Scholar 

  18. J. Comper, A. Quesnel, C. A. Fyfe, and R. K. Boyd. Can. J. Chem., 1983, 61, 92–96.

    CAS  Google Scholar 

  19. W. Cheng, H. Zhou, and S. Ren. Chin. Sci. Bull., 2005, 50, 822–825.

    CAS  Google Scholar 

  20. D. J. Arismendi-Arrieta, A. Vítek, and R. Prosmiti. J. Phys. Chem. C, 2016, 120, 26093–26102.

    CAS  Google Scholar 

  21. Y. Handa, O. Yamamuro, M. Oguni, and H. Suga. J. Chem. Thermodyn., 1989, 21, 1249–1262.

    CAS  Google Scholar 

  22. D. Leaist, J. Murray M. Post, and D. Davidson. J. Phys. Chem., 1982, 86, 4175–4178.

    CAS  Google Scholar 

  23. R. Nakagawa, A. Hachikubo, and H. Shoji. In: 6th International Conference on Gas Hydrates, Chevron, Vancouver, BC, Canada, 2008.

  24. Y. Handa. J. Chem. Thermodyn., 1986, 18, 915–921.

    CAS  Google Scholar 

  25. S. Alavi, R. Susilo, and J. A. Ripmeester. J. Chem. Phys., 2009, 130, 174501.

    PubMed  Google Scholar 

  26. R. Susilo, S. Alavi, I. L. Moudrakovski, P. Englezos, and J. A. Ripmeester. ChemPhysChem, 2009, 10, 824–829.

    CAS  PubMed  Google Scholar 

  27. H. Mohammadi-Manesh, H. Ghafari, and S. Alavi. J. Chem. Phys. C, 2017, 121, 8832–8840.

    CAS  Google Scholar 

  28. T. C. Mak and R. K. McMullan. J. Chem. Phys., 1965, 42, 2732–2737.

    Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria M. A., Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.-E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, C. Cammi, J. W. Pomelli, P. Y. Ochterski, K. Ayala, G. A. Morokuma, P. Voth, R. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A.-D. Daniels, M. C. Strain, O. Farkas, D.-K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.-L. Martin, D. J. Fox, T. Keith, M. A. AlLaham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian Inc., Wallingford, CT, 2009.

  30. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman. J. Am. Chem. Soc., 1995, 117, 5179–5197.

    CAS  Google Scholar 

  31. S. Murad and K. Gubbins. In: Computer Modelling of Matter/Ed. P. Lykos. American Chemical Society, Washington, DC, 1978, 62.

  32. W. L. Jorgensen, J. D. Madura, and C. J. Swenson. J. Am. Chem. Soc., 1984, 106, 6638–6646.

    CAS  Google Scholar 

  33. H. Berendsen, J. Grigera, and T. Straatsma. J. Phys. Chem., 1987, 91, 6269–6271.

    CAS  Google Scholar 

  34. C. M. Breneman and W. K. Biberg. J. Comput. Chem., 1990, 11, 361–373.

    CAS  Google Scholar 

  35. C. P. Kelly, C. J. Cramer, and D. G. Truhlar. Theor. Chem. Acc., 2005, 113, 133–151.

    CAS  Google Scholar 

  36. B. Wang, S. L. Li, and D. G. Truhlar. J. Chem. Theor. Comput., 2014, 10, 5640–5650.

    CAS  Google Scholar 

  37. Y. Mei, A. C. Simmonett, F. C. Pickard IV, R. A. DiStasio Jr., B. R. Brooks, and Y. Shao. J. Phys. Chem. A, 2015, 119, 5865–5882.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. W. Smith, T. Forester, I. Todorov, and M. Leslie. The DL_poly 2 user manual. CCLRC, Daresbury Laboratory, Daresbury, Warrington WA4 4AD, England, 2001.

    Google Scholar 

  39. S. Nosé. J. Chem. Phys., 1984, 81, 511–519.

    Google Scholar 

  40. W. G. Hoover. Phys. Rev. A, 1985, 31, 1695.

    CAS  Google Scholar 

  41. S. Melchionna, G. Ciccotti, and B. Lee Holian. Mol. Phys., 1993, 78, 533–544.

    CAS  Google Scholar 

  42. G. Guerin, D. Goldberg, and A. Meltser. J. Geophys. Res. [Solid Earth], 1999, 104, 17781–17795.

    CAS  Google Scholar 

  43. A. Y. Manakov, A. Y. Likhacheva, V. A. Potemkin, A. G. Ogienko, A. V. Kurnosov, and A. I. Ancharov. ChemPhysChem, 2011, 12, 2476–2484.

    CAS  PubMed  Google Scholar 

  44. M. Helgerud, W. F. Waite, S. Kirby, and A. Nur. J. Geophys. Res. [Solid Earth], 2009, 114(B2).

  45. H. Docherty, A. Galindo, C. Vega, and E. Sanz. J. Chem. Phys., 2006, 12, 074510.

    Google Scholar 

  46. J. Costandy, V. K. Michalis, I. N. Tsimpanogiannis, A. K. Stubos, and I. G. Economou. Mol. Phys., 2016, 114, 2672–2687.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Saman Alavi for discussions on clathrate hydrate compounds. H. Mohammadi-Manesh and H. Ghafari thank the University of Yazd for computational support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Mohammadi-Manesh.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Text © The Author(s), 2020, published in Zhurnal Strukturnoi Khimii, 2020, Vol. 61, No. 3, pp. 378–388.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghafari, H., Mohammadi-Manesh, H. How Does the Guest—Host Hydrogen Bonding Affect the Thermal Properties of Clathrate Hydrates?. J Struct Chem 61, 354–365 (2020). https://doi.org/10.1134/S0022476620030038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476620030038

Keywords

Navigation