Skip to main content
Log in

Membrane-Membrane contact: Involvement of interfacial instability in the generation of discrete contacts

  • Review
  • Published:
Bioscience Reports

Abstract

The classical approach to understanding the closeness of approach of two membranes has developed from consideration of the net effect of an attractive van der Waals force and a repulsive electrostatic force. The repulsive role of hydration forces and stereorepulsion glycocalyx forces have been recently recognized and an analysis of the effect of crosslinking molecules has been developed. Implicit in these approaches is the idea of an intercellular water layer of uniform thickness which narrows but retains a uniform thickness as the cells move towards an equilibrium separation distance. Most recently an attempt has been made to develop a physical chemical approach to contact which accommodates the widespread occurrence of localized spatially separated point contacts between interacting cells and membranes. It is based on ideas drawn from analysis of the conditions required to destabilize thin liquid films so that thickness fluctuations develop spontaneously and grow as interfacial instabilities to give spatially periodic contact. Examples of plasma membrane behaviour which are consistent with the interfacial instability approach are discussed and experiments involving polycation, polyethylene glycol, dextran and lectin adhesion and agglutination of erythrocytes are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahkong, Q. F., Desmazes, J.-P., Georgescauld, D. et al. (1987)J. Cell. Sci. 88: 389–398.

    Google Scholar 

  2. Baranowski, Z., Kuzniki, L., Opas, H., et al. (1977).Proc. 5th Int. Congress of Protozoology 9:474.

    Google Scholar 

  3. Bell, G. I., Dembo M. and Bongrand P. (1984).Biophys. J. 45:1051–1064.

    Google Scholar 

  4. Coakley, W. T. and Deeley J. O. T. (1980).Biochim. Biophys. Acta. 602:355–375.

    Google Scholar 

  5. Coakley, W. T., Darmani, H., Irwin, S. A. et al. (1988)Studia Biophysica 127: 69–74.

    Google Scholar 

  6. Coakley, W. T., Hewison, L. A. and Tilley, D. (1985)Eur. Biophys. J. 13:123–130.

    Google Scholar 

  7. Cowley, A. C., Fuller, N. L., Rand, R. P. et al. (1978)Biochemistry 17:3163–3168.

    Google Scholar 

  8. Crum, L. A., Coakley, W. T. and Deeley, J. O. T. (1979)Biochim. Biophys. Acta.,554: 76–89.

    Google Scholar 

  9. Curtis, A. S. G. (1973)Prog. Biophys. molec. Biol. 27:315–386.

    Google Scholar 

  10. Dan, J. C. (1967) In: Fertilisation (C. B. Metz and A. Monroy, eds.) vol. 1. Academic Press, New York pp. 237–283.

    Google Scholar 

  11. Darmani, H., Coakley, W. T., Hann A. C. et al. (1989)Cell. Biophys.; (in press).

  12. Dimitrov, D. S. and Jain, R. K. (1984)Biochim. Biophys. Acta. 779:437–468.

    Google Scholar 

  13. Donath, E. and Voigt, A. (1983)J. Theor. Biol. 101:569–584.

    Google Scholar 

  14. Duband, J.-L., Rocher, S., Chen, W.-T. and Yamada, K. M. (1986)J. Cell. Biol. 102:160–178.

    Google Scholar 

  15. Evans, E. A. (1985)Biophys. J. 48:175–183.

    Google Scholar 

  16. Evans, E. A. and Leung, A. (1984)J. Cell. Biol. 98:1201–1208.

    Google Scholar 

  17. Evans, E. A. and Parsegian, V. A. (1986)Proc. Natl. Acad. Sci. USA 83:7132–7136.

    Google Scholar 

  18. Fricke, K. and Sackmann, E. (1984)Biochim. Biophys Acta 803:145–152.

    Google Scholar 

  19. Gallez, D. and Coakley, W. T. (1986)Prog. Biophys. Molec. Biol. 48:155–199.

    Google Scholar 

  20. Geiger, B., Volk, T., Volberg, T.et al. (1987) In:Cell Behaviour: Shape, Adhesion and Motility (eds. J. E. M. Heaysman, C. A. Middleton and F. M. Watt)J. Cell. Sci. Supplement 8:251–272.

  21. Grieg, R. G. and Brooks, D. E. (1979)Nature 282:738–739.

    Google Scholar 

  22. Guerrero, A. and Darszon, A. (1989)Biochim. Biophys. Acta 980:109–116.

    Google Scholar 

  23. Hewison, L. A. (1988)Spatial Periodicity of Cell-Cell Contact: An Interfacial Instability Approach. (Ph.D. Thesis, University of Wales.)

  24. Hewison, L. A., Coakley, W. T. and Meyer, H. W. (1988)Cell. Biophys. 13:151–1157.

    Google Scholar 

  25. Hiemenz, P. C. (1985)Principles of Colloid and Surface Chemistry, Marcel Dekker, New York.

    Google Scholar 

  26. Horn, R. G., Israelachvili, J. N., Marra, J., et al. (1988)Biophys. J. 5: 1185–1186.

    Google Scholar 

  27. Israelachvili, J. N. and McGuiggan, P. M. (1988)Science 241:795–800.

    Google Scholar 

  28. Izzard, C. S. and Lochner, L. P. (1980)J. Cell Sci. 42:81–116.

    Google Scholar 

  29. Jan, K.-M. and Chien, S. (1973)J. Gen. Physiol. 61:638–654.

    Google Scholar 

  30. Johnson, L. V. (1986)Dev. Biol. 113:1–9.

    Google Scholar 

  31. Katchalsky, A., Danon, D. and Nevo, A. (1959)Biochim. Biophys. Acta. 33:120–138.

    Google Scholar 

  32. King, C. A., Cooper, L. and Preston, T. M. (1983)Protoplasma 118:10–18.

    Google Scholar 

  33. Knutton, S. (1979)J. Cell Sci. 36:61–72.

    Google Scholar 

  34. Leneveu, D. M., Rand, R. P., Parsegian, V. A. et al. (1977)Biophys. J. 18: 209–230.

    Google Scholar 

  35. Meizel, S. (1984)Biol. Rev. 59:125–157.

    Google Scholar 

  36. Nir, S. (1977)Prog. Surface Sci. 8:1–58.

    Google Scholar 

  37. Pethica, B. A. (1961).Exp. Cell Res. Suppl. 8:123–140.

    Google Scholar 

  38. Preston, T. M. and King, C. A. (1978)J. Cell. Sci. 34:145–158.

    Google Scholar 

  39. Prevost, M. and Gallez, D. (1984)J. Chem. Soc. Faraday Trans. 80:517–533.

    Google Scholar 

  40. Rand, R. P. and Parsegian, V. A. (1989)Biochim. Biophys. Acta., (in press.)

  41. Rotrosen, D., Edwards, J. E. Jr., Gibson, T. R. et al. (1985)J. Infect. Dis. 152: 1264–1274.

    Google Scholar 

  42. Russell, L., Peterson, R. and Freud, M. (1979)J. exp. Zool. 208:41–56.

    Google Scholar 

  43. Segel, L. A., Volk, T. and Geiger, B. (1983)Cell. Biophys. 5:195.

    Google Scholar 

  44. Skalak, R., Zarda, P. R., Jan, K.-M. et al. (1981)Biophys. J. 35:771–781.

    Google Scholar 

  45. Tan, S. S. and Morris-Kay, G. M. (1986)J. Embryol Exp. Morp. 98:21–58.

    Google Scholar 

  46. Tilley, D., Coakley, W. T., Gould, R. K. et al. (1987)Eur Biophys. J. 14:499–507.

    Google Scholar 

  47. Trimmer, J. S. and Vacquier, V. D. (1986)Ann Rev Cell Biol. 2:1–26.

    Google Scholar 

  48. van Oss, C. J. and Absolom, D. R. (1983)Vox Sanquinis 44:183–190.

    Google Scholar 

  49. van Oss, C. J., Chaudhury, M. K. and Good, R. J. (1987)Adv. Collid Interfac. Sci. 28: 35–77.

    Google Scholar 

  50. van Oss, C. J. and Coakley, W. T. (1988)Cell. Biophys. 13:141–150.

    Google Scholar 

  51. van Oss, C. J., Gillman, C. F. and Good, R. J. (1972)Immunol Commun. 1:627–636.

    Google Scholar 

  52. Vasiliev, J. M. (1985)Biochim. Biophys. Acta. 780:21–65.

    Google Scholar 

  53. Vasiliev, J. M. (1987) In:Cell Behaviour: Shape, Adhesion and Motility (eds. J. E. M. Heaysman, C. A. Middleton and F. M. Watt (1987)J. Cell Sci. Supplement 8:1–18.

  54. Verwey, E. J. W. and Overbeek, J. Th. G. (1948)Theory of the Stability of Lyophobic Colloids.Elsevier, Amsterdam (1948).

    Google Scholar 

  55. Vienken, J., Zimmermann, U., Ganser, R. et al. (1983)Planta 157:331–335.

    Google Scholar 

  56. Zakai, N., Kulka, R. G. and Loyter, A. (1977)Proc. Natn. Acad. Sci. U.S.A. 74: 2417–2421.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coakley, W.T., Gallez, D. Membrane-Membrane contact: Involvement of interfacial instability in the generation of discrete contacts. Biosci Rep 9, 675–691 (1989). https://doi.org/10.1007/BF01114806

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01114806

Key Words

Navigation