Skip to main content
Log in

Simplified methods for the evaluation of the parameters of the time course of plasma concentration in the one-compartment body model with first-order invasion and first-order drug elimination including methods for ascertaining when such rate constants are equal

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

An Erratum to this article was published on 01 April 1994

Abstract

The many limitations in determining the pharmacokinetic parameters of firstorder invasion of, and elimination from, the onecompartment body model by the method of residuals or by “feathering” Ct data can be minimized by applying the simplified methods outlined herein. Comparisons of the apparent volumes of distribution, V, calculated on the premises that the Bateman Function represents ka>ke or its converse, ke>ka,i.e., flip-flop, can permit a proper choice of the correct version. Estimation of ke can be obtained by regression of (A0/V)/C(oncentration) on AUC1/ Cwhere A0/Vis estimable from knowledge of Cmax and tmax since \(A_0 /V = C_{max} e^{k_e t_{max} }\).The ratio of the magnitude of the rate constant of invasion to that of elimination, m=ka/ke,is related to ketmax by the expression ketmax=ln m/ (m−1)for all possible values of m.A table for the determination of m from values of ketmax is given. When bioavailability, γ=A0/Dose,is known or complete, ke and Vcan be determined from the respective ordinate and abscissa of the intersection of \(A_0 /C_{max} e^{k_e t_{max} }\) and Cl(clearance)/ke,both plotted against arbitrary ke values. The two functions may not intersect at low values of mdue to errored C-t values but the ke value when the two curves are closest (kmin)may approximate ke.The intersections of \(C_{max} e^{k_e t_{max} }\) and keAUCT (AUCtrap)plotted against variable ke values (Method A) provide estimates of ke from their abscissa values and A/Vfrom their ordinate values when γis unknown. Method B appears to give more reliable estimates of ke at the kmin of the difference \(e^{k_e t_{max} } /k_e - AUCT/C_{max}\) plotted against ke.Since kmin of this plot is 1/tmax when m=1,the identity of the mas unity underlying the C-t data is indicated when either kmintmax is approximately unity or kmin ispractically synonymous with 1/tmax.This was clearly shown when 12 constructed m=1,C-t cases with 10% random error were evaluated by Method B. Better estimates were effected by all procedures when the raw C-t data were smoothed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. S. Riggs.The Mathematical Approach to Physiological Problems. A Critical Primer, Williams and Wilkins, Baltimore, MD, 1963, pp. 120–162,

    Google Scholar 

  2. D. S. Riggs.The Mathematical Approach to Physiological Problems. A Critical Primer, Williams and Wilkins, Baltimore, MD, 1963, p. 163.

    Google Scholar 

  3. M. Gibaldi and D. Perner.Pharmacokinetics, Marcel Dekker, New York, 1975, pp. 281–292, pp. 33–34.

    Google Scholar 

  4. M. Gibaldi and D. Perner.Pharmacokinetics, Marcel Dekker, New York, 1975, p. 18, pp. 33–34.

    Google Scholar 

  5. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, pp. 433–436

    Google Scholar 

  6. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, pp. 145–198

    Google Scholar 

  7. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, pp. 34–39

    Google Scholar 

  8. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, p. 18

    Google Scholar 

  9. M. Gibaldi and D. Perrier.Pharmacokinetics, 2nd ed. Marcel Dekker, New York, 1982, pp. 409–417.

    Google Scholar 

  10. H. Bateman. The solution of a system of differential equations occurring in the theory of radioactive transformations.Proc. Cambridge Phil. Soc. 15:423–427 (1910).

    CAS  Google Scholar 

  11. F. H. Dost.Grundlagen der Pharmakokinetik, Georg Thieme Verlag, Stuttgart, 1968, pp. 44–47, 241–242;

    Google Scholar 

  12. F. H. Dost.Grundlagen der Pharmakokinetik, Georg Thieme Verlag, Stuttgart, 1968, p. 43.

    Google Scholar 

  13. S. Glasstone.Textbook of Physical Chemistry, 2nd ed. D. Van Nostrand Co., New York, 1946, pp. 1075–1077.

    Google Scholar 

  14. P. L. Altman and D. S. Dittmer (eds.).Biology Data Book, Federation of American Societies for Experimental Biology, Washington, DC, 1964, p. 264.

    Google Scholar 

  15. P. L. Altman and D. S. Dittmer (eds.).Blood and Other Body Fluids, Federation of American Societies for Experimental Biology, Washington, D.C., 1961, p. 358, (b) p. 5.

    Google Scholar 

  16. P. L. Altman and D. S. Dittmer (eds.).Blood and Other Body Fluids, Federation of American Societies for Experimental Biology, Washington, D.C., 1961, p. 5.

    Google Scholar 

  17. K. K. H. Chan and K. W. Miller. Nonlinear regression approach for determining whether absorption and elimination rate constants are equal in the one-compartment body model with first-order processes.J. Pharm. Sci. 72:574–576 (1983).

    Article  CAS  PubMed  Google Scholar 

  18. I. H. Patel. Concentration ratio method to determine the rate constant for the special case when ka = ke.J. Pharm. Sci. 73:859–861 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. C. M. Metzler, G. K. Elfring, and A. J. McEwen. A package of computer programs for pharmacokinetic modelling.Biometrics 30:562–563 (abstr.) (1974).

    Article  Google Scholar 

  20. K. Yamaoka, Y. Tanigawara, T. Nakagawa, and T. Uno. A pharmacokinetic analysis program (multi) for microcomputer.J. Pharm. Dyn. 41:879–885 (1981).

    Article  Google Scholar 

  21. J. G. Wagner and E. Nelson. Kinetic analysis of blood levels and urinary excretion in the absorptive phase after single doses of drugs.J. Pharm. Sci. 53:1392–1403 (1964).

    Article  CAS  PubMed  Google Scholar 

  22. A. J. Sedman and J. G. Wagner.AUTOAN: a decision-making pharmacokinetic computer program. Publication Distribution Service, Ann Arbor, MI, 1974.

    Google Scholar 

  23. R-Strip & Minsq. Micromath Scientific Software, Salt Lake City, UT, 1987.

    Google Scholar 

  24. M. Bialer. A simple method for determining whether absorption and elimination rate constants are equal in the one-compartment open model with first-order processes.J. Pharmacokinet. Biopharm. 8:111–113 (1980).

    Article  CAS  PubMed  Google Scholar 

  25. J. Zhi. Unique pharmacokinetic characteristics of the one compartment first order absorption model with equal absorption and elimination rate constants.J. Pharm. Sci. 79:652–654 (1990).

    Article  CAS  PubMed  Google Scholar 

  26. M. Barzegar-Jalai and M. Toomanian, Theoretical consideration from the cases where absorption rate constant approaches elimination rate constant in the linear one-compartment open models.Int. J. Pharm. 12:351–354 (1982).

    Article  Google Scholar 

  27. P. Macheris, M. Symillides, and C. Reppas. On the assessment of the relative magnitude of rate constants in the linear open one-compartment model.J. Pharm. Sci. 81:1231–1233 (1992).

    Article  Google Scholar 

  28. D. Perrier and M. Mayersohn, Non compartmental determination of the steady state volume of distribution for any mode of administration.J. Pharm. Sci.,71:373–373 (1982).

    Article  Google Scholar 

  29. E. R. Garrett, Integral procedures in pharmacokinetics and their application to the parameter determination of appearing metabolites in L. Z. Benet, G. Levy, and B. L. Ferraiolo (eds.),Pharmacokinetics A Modern View, Plenum Press, New York, 1984, pp. 253–279.

    Chapter  Google Scholar 

  30. E. R. Garrett, Pharmacokinetic procedures and strategies. In E. R. Garrett and J. L. Hirtz (eds.),Drug Fate and Metabolis Methods and Techniques, Vol. 5, Marcel Dekker, New York, 1985, pp. 1–49.

    Google Scholar 

  31. K. Yamaoka, T. Nakagawa, and T. Uno. Statistical moments in pharmacokinetics.J. Pharmacokin. Biopharm. 6:547–558 (1978).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

We regretfully announce that Dr. Edward Garrett passed away on October 25, 1993, after an extended illness.

An erratum to this article is available at http://dx.doi.org/10.1007/BF02353543.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garrett, E.R. Simplified methods for the evaluation of the parameters of the time course of plasma concentration in the one-compartment body model with first-order invasion and first-order drug elimination including methods for ascertaining when such rate constants are equal. Journal of Pharmacokinetics and Biopharmaceutics 21, 689–734 (1993). https://doi.org/10.1007/BF01113501

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01113501

Key words

Navigation