Skip to main content
Log in

Glutamate receptor changes in brain synaptic membranes from human alcoholics

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Brains from human alcoholics and non-alcoholics were obtained shortly after death. The hippocampus was dissected, homogenized, and processed for the isolation of a synaptic membraneenriched fraction and the study ofl-[3H]glutamic acid and 3-((±)-2-carboxypiperazin-4-yl)-[1,23H]propyl-l-phosphonic acid ([3H]CPP) binding sites. The pharmacological characteristics ofl-[3H]glutamic acid binding to synaptic membranes isolated from hippocampus corresponded to the labeling of a mixture of N-methyl-d-aspartate (NMDA), kainate and quisqualic acid receptor sites. Synaptic membranes prepared from the hippocampus of individuals classified as alcoholics had significantly higher density of glutamate binding sites than identically prepared membranes from non-alcoholic individuals. In addition, there was a clear definition of a population ofl-glutamate binding sites (approx. 10% of total) in the membranes from alcoholics that had a higher affinity for the ligand than the major set of sites labeled in membranes from both alcoholics and non-alcoholics. Neither the age of the individuals at the time of death nor the time that elapsed between death and processing of brain tissue were significant factors in determining either recovery of purified synaptic membranes from brain homogenates orl-[3H]glutamate binding to synaptic membranes. In order to determine whether some of the changes inl-[3H]glutamic acid binding were due to alterations in binding at the NMDA receptor subtype, we also measured binding of [3H]CPP to extensively washed crude synaptosomal membranes. Membranes from brains of alcoholics had higher affinity (3-fold) for [3H]CPP but lower binding capacity (3-fold) when compared with those of non-alcoholics. These observations suggest selective changes among different glutamate receptor subtypes in human brain under conditions of chronic alcohol intake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalant, H. 1971. Tolerance to and dependence on some nonopiate psychotropic drugs. Pharmacol. Rev. 23:135–191.

    Google Scholar 

  2. Goldstein, D. B. 1976. Minireview: Pharmacological aspects of physical dependence on ethanol. Life Sciences 18:553–562.

    Google Scholar 

  3. Michaelis, E. K. and Michaelis, M. L. Physico-chemical interactions between alcohol and biological membranes,in Research Advances in Alcohol and Drug Problems, R. G. Smart, F. B. Glaser, Y. Israel, H. Kalant, R. E. Popham and W. Schmidt, eds. (Plenum, New York, 1983), Vol. 7, pp. 127–173.

    Google Scholar 

  4. Calentano, J. J., Gibbs, T. T., and Farb, D. H. 1988. Ethanol potentiates GABA-and glycine-induced chloride currents in chick spinal cord neurons. Brain Res. 455:377–390.

    Google Scholar 

  5. Allan, A. M. and Harris, R. A. 1986. Gamma-aminobuytric acid and alcohol actions: Neurochemical studies of long-sleep and shortsleep mice. Life Sci. 39:2005–2015.

    Google Scholar 

  6. Curtis, D. R. and Johnston, G. A. R. 1974. Amino acid transmitters in the mammalian central nervous system. Ergebn. Physiol. 69:97–188.

    Google Scholar 

  7. Cotman, C. W., Monaghan, D. T., Ottersen, O. P., and Storm-Mathisen, J. 1987. Anatomical organization of excitatory amino acid receptors and their pathways. Trends Neurosci. 10:273–280.

    Google Scholar 

  8. Crunelli, V., Forda, S., and Kelly, J. S. 1984. The reversal potential of excitatory amino acid action on granule cells of the rat dentate gyrus. J. Physiol. 351:327–342.

    Google Scholar 

  9. Sloviter, R. S. 1985. A selective loss of hippocampal mossy fiber Timm stain accompanies granule cell seizure activity induced by perforant path stimulation. Brain Res. 330:150–153.

    Google Scholar 

  10. Adams, D. J., Gage, P. W., and Hamill, O. P. 1977. Ethanol reduces excitatory postsynaptic current duration at a crustacean neuromuscular junction. Nature 266:739–741.

    Google Scholar 

  11. Teichberg, V. I., Tal, N., Goldberg, O., and Luini, A. 1984. Barbiturates, alcohols and the CNS excitatory neurotransmission: Specific effects on the kainate and quisqualate receptors. Brain Res. 291:285–292.

    Google Scholar 

  12. Lovinger, D. M., White, G., and Weight, F. F. 1989. Ethanol inhibits NMDA-activated ion current in hippocampal neurons. Science 243:1721–1724.

    Google Scholar 

  13. Hoffman, P. L., Rabe, C. S., Moses, F. and Tabakoff, B. 1989. N-Methyl-D-Aspartate receptors and ethanol: Inhibition of calcium flux and cyclic GMP production. J. Neurochem. 52:1937–1940.

    Google Scholar 

  14. Recasens, M., Guiramand, J., Nourigat, A., Sassetti, I., and Devilliers, G. 1988. A new quisqualate receptor subtype (sAA2) responsible for the glutamate-induced inositol phosphate formation in rat brain synaptoneurosomes. Neurochem. Int. 13:463–467.

    Google Scholar 

  15. Sugiyama, H., Ito, I., and Watanabe, M. 1989. Glutamate receptor subtypes may be classified into two major categories: A study on Xenopus oocytes injected with rat brain mRNA. Neuron 3:129–132.

    Google Scholar 

  16. Watkins, J. C., Krogsgaard-Larsen, P., and Honore, T. 1990. Structure-activity relationships in the development of excitatory amino acid receptor agonists and competitive antagonists. Trends Pharmacol. Sci. 11:25–33.

    Google Scholar 

  17. Bekkers, J. M. and Stevens, C. F. 1989. NMDA and non-NMDA receptors are co-localized at individual excitatory synapses in cultured rat hippocampus. Nature 341:230–233.

    Google Scholar 

  18. Freed, W. J. and Michaelis, E. K. 1978. Glutamic acid and ethanol dependence. Pharmacol. Biochem. Behav. 8:509–514.

    Google Scholar 

  19. Grant, K. A. and Tabakoff, B. 1989. Blockade of seizures in ethanol-dependent mice by the NMDA receptor antagonist MK-801. Alcoholism: Clin. Exper. Res. 13:316.

    Google Scholar 

  20. Michaelis, E. K., Mulvaney, J. J., and Freed, W. J. 1978. Effects of acute and chronic ethanol intake on synaptosomal glutamate binding activity. Biochem. Pharmacol. 27:1685–1691.

    Google Scholar 

  21. Michaelis, E. K., Roy, S., Galton, N., Cunningham, M., LeCluyse, E., and Michaelis, M. L. 1987. Correlation of glutamate binding activity with glutamate-binding protein immunoreactivity in the brain of control and alcohol-treated rats. Neurochem. Int. 11:209–218.

    Google Scholar 

  22. Chen, J.-W., Cunningham, M. D., Galton, N., and Michaelis, E. K. 1988. Immune labelling and purification of a 71 kDa glutamate binding protein from brain synaptic membranes. J. Biol. Chem. 263:417–427.

    Google Scholar 

  23. Michaelis, E. K., Chen, J.-W., Stormann, T. M., and Roy, S. Molecular and functional characterization of a brain neuronal membrane glutamate-binding protein,in Neurotransmitters and COrtical Function, M. Avoli, ed., (Plenum, New York, 1988) pp. 71–83.

    Google Scholar 

  24. Michaelis, E. K., Michaelis, M. L., Chang, H. H., and Kitos, T. E. 1983. High affinity Ca2+-stimulated Mg2+-dependent ATPase in rat brain synaptosomes, synaptic membranes, and microsomes. J. Biol. Chem. 258:6101–6108.

    Google Scholar 

  25. Cunningham, M. D. and Michaelis, E. K. 1990. Solubilization and partial purification of 3-((±)-2-carboxypiperazin-4-yl)-[1,23H] propyl-1-phosphonic acid ([3H]CPP recognition proteins from rat brain synaptic membranes. J. Biol. Chem. 265:7768–7778.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  27. Perouansky, M. and Grantyn, R. 1989. Separation of quisqualate- and kainate-selective glutamate receptors in cultured neurons from the rat superior colliculus. J. Neurosci. 9:70–80.

    Google Scholar 

  28. Zorumski, C. F. and Yang, J. 1988. AMPA, kainate, and quisqualate activate a common receptor-channel complex on embryonic motoneurons. J. Neurosci. 8:4277–4286.

    Google Scholar 

  29. Verdoorn, T. A., Kleckner, N. W. and Dingledine, R. 1989. N-Methyl-D-Aspartate/Glycine and Quisqualate/Kainate receptors expressed inXenopus oocytes: antagonist pharmacology. Molec. Pharmacol. 35:360–368.

    Google Scholar 

  30. Schoepp, D. D., and Johnson, B. G. 1988. Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acidsensitive quisqualate receptors coupled to phosphoinositide hydrolysis of rat hippocampus. J. Neurochem. 50:1605–1613.

    Google Scholar 

  31. Blackstone, C. D., Suppatopone, S., and Snyder, S. H. 1989. Inositol phospholipid-linked glutamate receptors mediate cerebellar parallel-fiber-Purkinje-cell synaptic transmission. Proc. Natl. Acad. Sci. 86:4316–4320.

    Google Scholar 

  32. Kornhuber, J., Mack-Burkhardt, F., Kornhuber, M. E., and Riederer, P. 1989. [3H]MK-801 binding sites in post-mortem human frontal cortex. Eur. J. Pharmacol. 162:483–490.

    Google Scholar 

  33. Savage, D. D., Werling, L. L., Nadler, J. V., and McNamara, J. O. 1984. Selective and reversible increase in the number of quisqualate-sensitive glutamate binding sites on hippocampal synaptic membranes after angular bundle kindling. Brain Res. 307:332–335.

    Google Scholar 

  34. Iadarola, M. J., Nicoletti, F., Naranjo, J. R., Putnam, F., and Costa, E. 1986. Kindling enhances the stimulation of inositol phospholipid hydrolysis elicited by ibotenic acid in rat hippocampal slices. Brain Res. 374:174–178.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michaelis, E.K., Freed, W.J., Galton, N. et al. Glutamate receptor changes in brain synaptic membranes from human alcoholics. Neurochem Res 15, 1055–1063 (1990). https://doi.org/10.1007/BF01101704

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01101704

Key words

Navigation