Skip to main content
Log in

The physical rationale for special relativity

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The structure of the Lorentz transformation depends intimately on the conventional operations for measurement of lengths (L) and time intervals (T). The prescription for length measurement leads to justifiable utilization of Euclidean geometry over finite values of the coordinates. Then T-values can be regarded as ratios of length measurements within a suitably defined clock. In certain cases the synchronization process should be supplemented by measurements providing position certification. The Lorentz transformation emerges from three specific symmetry statements, assured by the nature of the L and T operations: (1) one-one correspondence of finite values of the coordinates of two inertial frames, (2) frame reciprocity, and (3) spatial isotropy. (Light signaling is not needed in this derivation. Afterward, it is assumed that light is indeed an agent moving with the common speed revealed by the transformation.) When rest masses have been determined in the conventional fashion, the conservation of momentum and of energy follow from the kinematics—a result due to Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Frank and H. Rothe,Ann. Physik 34, 835 (1911); A. Church,Am. Math. Monthly 31, 376 (1924); H. Arzelies,Relativity Kinematics (Pergamon, Oxford, 1966); A. Grünbaum,Am. J. Phys. 23, 450 (1955) and24, 588 (1956); B. Liebowitz,Am. J. Phys. 24, 597 (1956).

    Google Scholar 

  2. Banesh Hoffmann,Rev. Mod. Phys. 4, 173 (1932); S. Basri,Rev. Mod. Phys. 37, 288 (1965).

    Google Scholar 

  3. A. Einstein,Ann. Physik 17, 891 (1905) [transl. by Perrott and Jeffery, inThe Principle of Relativity (Dover, New York, 1952)].

    Google Scholar 

  4. A. N. Whitehead,The Concept of Nature (Cambridge U. P., London, 1964), Chapter 7.

    Google Scholar 

  5. A. N. Whitehead,An Enquiry Concerning the Principles of Natural Knowledge (Cambridge U. P., London, 1925).

    Google Scholar 

  6. F. Klein,Geometry (Dover, New York, 1948), pp. 91, 159–172.

    Google Scholar 

  7. A. N. Whitehead, inEncyclopedia Brittanica, 13th ed. (Encyclopedia Brittanica, Chicago, 1926), Vol. 11, p. 734.

    Google Scholar 

  8. E. T. Bell,The Development of Mathematics, 2nd ed. (McGraw-Hill, New York, 1945), pp. 345–353.

    Google Scholar 

  9. A. Einstein,Relativity, The Special and the General Theory (Crown Publishers, New York, 1951).

    Google Scholar 

  10. A. E. Ruark,How to Understand Special Relativity, Report TID 23694 (U. S. Atomic Energy Commission, September 1966).

  11. A. Einstein,The Meaning of Relativity (Princeton U.P., Princeton, New Jersey, 1923), p. 31.

    Google Scholar 

  12. J. Terrell,Los Alamos Report LADC 2842, April 1957;Bull. Am. Phys. Soc. 4, 294 (1959);Phys. Rev. 116, 1041 (1959);Nuovo Cim. X,16, 457 (1960).

  13. A. E. Ruark,Phys. Rev. 37, 315 (1931).

    Google Scholar 

  14. A. Einstein,Bull. Am. Math. Monthly 41(4) 223 (1935).

    Google Scholar 

  15. A. E. Ruark, A note on classical fields, inIsotopic and Cosmic Chemistry (North-Holland, Amsterdam, 1964), p. 552.

    Google Scholar 

  16. W. S. N. Trimmer, H. F. Baierlein, J. E. Faller, and H. A. Hill,Phys. Rev. D 8, 3321 (1973); W. S. N. Trimmer and H. F. Baierlein,Phys. Rev. D 8, 3326 (1973).

    Google Scholar 

  17. V. Berzi and V. Gorini,J. Math. Phys. 10, 1518 (1969).

    Google Scholar 

  18. V. Gorini and A. Zecca,J. Math. Phys. 11, 2226 (1970).

    Google Scholar 

  19. V. Gorini, inProc. Internat. Study Institute in Math. Phys. (Istanbul, 1970).

  20. V. Gorini,Commun. Math. Phys. 21, 150 (1971).

    Google Scholar 

  21. L. A. Lugiato and V. Gorini, Report CPT-125, December 1971, Center for Particle Theory, Univ. of Texas, Austin, Texas.

  22. H. W. Turnbull,The Theory of Determinants, Matrices and Invariants, 2nd ed. (Blackie and Sons, London, 1945), pp. 155–160, 331, 347–9.

    Google Scholar 

  23. P. A. M. Dirac,Rev. Mod. Phys. 34, 592 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruark, A.E. The physical rationale for special relativity. Found Phys 5, 21–36 (1975). https://doi.org/10.1007/BF01100312

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01100312

Keywords

Navigation