Skip to main content

Special Relativity

  • Chapter
  • First Online:
Mathematics of Particle-Wave Mechanical Systems
  • 280 Accesses

Abstract

In this chapter we summarise some of the standard results of conventional special relativity theory that are needed to formulate the proposed extension of Newton’s second law. The word special alludes to invariance under transformations relating constant relative velocity frames of reference, which is in contrast to general relativity which relates to invariance under arbitrary space-time coordinate transformations. The first section deals with the fundamental notion of Lorentz transformations and the importance of invariance with respect to frames that are moving with constant relative velocity. The following section highlights the Einstein addition of velocities law which is an immediate consequence of the notion of invariance under Lorentz transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Bohm. The special theory of relativity. W. A. Benjamin, Inc., New York, 1965.

    MATH  Google Scholar 

  2. B. Coleman. Special relativity dynamics without a priori momentum conservation. Eur. J. Phys., 26:647–650, 2005.

    Article  MathSciNet  Google Scholar 

  3. L. de Broglie. Recherches sur la theorie des quanta. PhD Thesis, Sorbonne University of Paris, France, 1924.

    Google Scholar 

  4. H. Dingle. The special theory of relativity. Methuen and Co.Ltd., London, 1961.

    MATH  Google Scholar 

  5. R. P. Feynman, R. B. Leighton, and M. Sands. The Feynman Lectures on Physics, volume 1. Addison-Wesley, 1964.

    MATH  Google Scholar 

  6. A. P. French. Special relativity. Thomas Nelson and Sons Ltd., London, 1968.

    Google Scholar 

  7. G. M. L. Gladwell. Contact problems in the classical theory of elasticity. Sijthoff and Noordhoof, Leyden, 1980.

    Google Scholar 

  8. E. Goursat. A course in mathematical analysis, volume 1. Dover Publications, New York, 1959.

    MATH  Google Scholar 

  9. J. Guemez, M. Fiolhais, and L. A. Fernandez. The principle of relativity and the de Broglie relation. Am. J Phys., 84:443–447, 2016.

    Article  Google Scholar 

  10. J. M. Hill. On the formal origin of dark energy. Zeitschrift fur angewandte Mathematik und Physik, 69:133–145, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. M. Hill. Some further comments on special relativity and dark energy. Zeitschrift fur angewandte Mathematik und Physik, 70:5–14, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. M. Hill. Special relativity, de Broglie waves, dark energy and quantum mechanics. Zeitschrift fur angewandte Mathematik und Physik, 70:131–153, 2019.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. M. Hill. Four states of matter and centrally symmetric de Broglie particle-wave mechanical systems. Mathematics and Mechanics of Solids, 26:263–284, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. M. Hill. A review of de Broglie particle-wave mechanical systems. Mathematics and Mechanics of Solids, 25:1763–1777, 2020.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. M. Hill. A mechanical model for dark matter and dark energy. Zeitschrift fur angewandte Mathematik und Physik, 72:56:14pp, 2021.

    Google Scholar 

  16. J. M. Hill. Einstein’s energy and space isotropy. Zeitschrift fur angewandte Mathematik und Physik, 73:65:9pp, 2022.

    Google Scholar 

  17. J. M. Hill and B. J. Cox. Einstein’s special relativity beyond the speed of light. Proc. R. Soc. A, 468:4174–4192, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. M. Hill and B. J. Cox. Generalised Einstein mass variation formulae: I Sub-luminal relative frame velocities. Results in Physics, 6:112–121, 2016.

    Article  Google Scholar 

  19. J. M. Hill and B. J. Cox. Generalised Einstein mass variation formulae: II Superluminal relative frame velocities. Results in Physics, 6:122–130, 2016.

    Article  Google Scholar 

  20. J. M. Hill and A. Tordesillas. The pressure distribution for symmetrical contact of circular elastic cylinders. Quarterly Journal of Mechanics and Applied Mathematics, 42:581–604, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. M. Houlik and G. Rousseaux. “Non-relativistic” kinematics: Particles or waves. Unpublished, available from Germain Rousseaux website University of Poitiers, page 4pp., 2010.

    Google Scholar 

  22. K. L. Johnson. Contact mechanics. University Press, Cambridge, 1984.

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz. Course of Theoretical Physics, volume 2. Addison-Wesley, 1951.

    MATH  Google Scholar 

  24. A. R. Lee and T. M. Kalotas. Lorentz transformations from the first postulate. Amer. J. Phys., 43:434–437, 1975.

    Article  Google Scholar 

  25. J.-M. Levy-Leblond. One more derivation of the Lorentz transformation. Amer. J. Phys., 44:271–277, 1976.

    Article  Google Scholar 

  26. W. H. McCrea. Relativity physics. Methuen and Co.Ltd., London, 1947.

    MATH  Google Scholar 

  27. H. Minkowski. Space and time, in “The Principle of Relativity”, by H. A. Lorentz, A. Einstein, H. Minkowski, and H. Weyl. Dover, New York, 1952.

    Google Scholar 

  28. C. Moller. The theory of relativity. Clarendon Press, Oxford, 1966.

    Google Scholar 

  29. W. Perrett and Jeffery G. B. The principle of relativity. Dover Publications Inc., 2017.

    Google Scholar 

  30. R. Resnick. Introduction to special relativity. John Wiley and Sons Inc., New York, 1968.

    Google Scholar 

  31. G. Rousseaux. Forty years of Galilean Electromagnetism (1973–2013). Eur. Phys. J. Plus, 128:81–94, 2013.

    Article  Google Scholar 

  32. D. Scott and G. F. Smoot. Cosmic microwave background mini-review. P.A. Zyla et al. Particle Data Group, Review of Particle Physics, Prog. Theor. Exp. Physics, 8:083C01, 2020.

    Google Scholar 

  33. S. Sonego and M. Pin. Foundations of anisotropic relativistic mechanics. Journal of Mathematical Physics, 50:042902, 2009.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. C. Tolman. Relativity, thermodynamics and cosmology. Clarendon Press, Oxford, 1946.

    MATH  Google Scholar 

  35. F. G. Tricomi. Integral equations. Interscience, New York, 1957.

    MATH  Google Scholar 

  36. P. Weinberger. Revisiting Louis de Broglie’s famous 1924 paper in the Philosophical Magazine. Philosophical Magazine Letters, 86:405–410, 2006.

    Article  Google Scholar 

  37. G. Weinstein. Variation of mass with velocity: “kugeltheorie” or “relativtheorie”. arXiv:1205.5951 [physics.hist-ph], 2012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hill, J. (2022). Special Relativity. In: Mathematics of Particle-Wave Mechanical Systems. Springer, Cham. https://doi.org/10.1007/978-3-031-19793-2_2

Download citation

Publish with us

Policies and ethics