Skip to main content
Log in

Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Regulation of medullary blood flow (MBF) is essential in maintaining renal function and blood pressure. However, it is unknown whether outer MBF (OMBF) and papillary blood flow (PBF) are regulated independently when extracellular volume (ECV) is enhanced. The aim of this study was to determine whether OMBF and PBF are differently regulated and whether there is an interaction between nitric oxide (NO), prostaglandins (PGs) and angiotensin II (Ang II) in regulating OMBF and PBF when ECV is enhanced. To achieve these goals, OMBF and PBF were measured by laser-Doppler in volume-expanded rats treated with a cyclooxygenase inhibitor (meclofenamate, 3 mg/kg) and/or a NO synthesis inhibitor (L-nitro-arginine methyl ester (L-NAME), 3 μg/kg/min) and/or Ang II (10 ng/kg/min). OMBF was unchanged by NO or PGs synthesis inhibition but decreased by 36 % (P < 0.05) when L-NAME and meclofenamate were infused simultaneously. PBF was similarly reduced by L-NAME (12 %), meclofenamate (17 %) or L-NAME + meclofenamate (19 %). Ang II did not modify OMBF, but it led to a similar decrease (P < 0.05) in OMBF when it was administered to rats with reduced NO (32 %), PGs (36 %) or NO and PGs (37 %) synthesis. In contrast, the fall in PBF induced by Ang II (12 %) was enhanced (P < 0.05) by the simultaneous PGs (30 %) or PGs and NO (31 %) synthesis inhibition but not in L-NAME-treated rats (20 %). This study presents novel findings suggesting that blood flows to the outer medulla and renal papilla are differently regulated and showing that there is a complex interaction between NO, PGs and Ang II in regulating OMBF and PBF when ECV is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alberola A, Pinilla JM, Quesada T, Romero JC, Salazar FJ (1992) Role of nitric oxide in mediating renal response to volume expansion. Hypertension 19:780–784

    Article  CAS  PubMed  Google Scholar 

  2. Atucha NM, Ramírez A, Quesada T, García-Estañ J (1994) Effect of nitric oxide inhibition on the renal papillary blood flow response to saline-induced volume expansion. Clin Sci 86:405–409

    Article  CAS  PubMed  Google Scholar 

  3. Badzynska B, Sadowski J (2008) Opposed effects of prostaglandin E2 on perfusion of rat renal cortex and medulla: interactions with the renin-angiotensin system. Exp Physiol 12:1292–1302

    Article  Google Scholar 

  4. Baylis C, Slangen B, Hussain S, Weaver C (1996) Relationship between NO release and cyclooxygenase products in the normal rat kidney. Am J Physiol Regul Integr Comp Physiol 271:R1327–R1334

    CAS  Google Scholar 

  5. Casellas D, Mimram A (1981) Shunting in renal microvasculature of the rat: a scanning electron microscopic study of corrosive casts. Anat Res 201:237–248

    Article  CAS  Google Scholar 

  6. Cowley AW (2008) Renal medullary oxidative stress, pressure-natriuresis and hypertension. Hypertension 52:777–786

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Crawford C, Kennedy-Lydon T, Sprott C, Desai T, Sawbridge L, Munday J, Unwin RJ, Wildman SS, Peppiatt-Wildman CM (2012) An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol 120:17–31

    Article  Google Scholar 

  8. Deng X, Welch WJ, Wilcox CS (1996) Role of nitric oxide in short-term and prolonged effects of angiotensin II on renal hemodynamics. Hypertension 27:1173–1179

    Article  CAS  PubMed  Google Scholar 

  9. Dickhout JG, Mori T, Cowley AW Jr (2002) Tubulovascular nitric oxide crosstalk: buffering of angiotensin II-induced medullary vasoconstriction. Circ Res 91:487–493

    Article  CAS  PubMed  Google Scholar 

  10. Faubert PF, Chou SY, Porush JG (1987) Regulation of papillary plasma flow by angiotensin II. Kidney Int 32:472–478

    Article  CAS  PubMed  Google Scholar 

  11. Fenoy FJ, Ferrer P, Carbonell LF, Salom MG (1995) Role of nitric oxide on papillary blood flow and pressure natriuresis. Hypertension 25:408–414

    Article  CAS  PubMed  Google Scholar 

  12. Franchini KG, Cowley AW (1996) Renal cortical and medullary blood flow responses during water restriction: role of vasopressin. Am J Physiol Regul Integr Comp Physiol 270:R1257–R1264

    CAS  Google Scholar 

  13. Gonzalez AA, Luffman C, Bourgeois CRT, Vio CP, Prieto MC (2013) Angiotensin II-independent upregulation of cyclooxygenase-2 by activation of the (pro)rennin receptor in rat renal inner medullary cells. Hypertension 61:443–449

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hansell P, Göransson A, Sjöquist M, Ulfendahl HR (1990) Effects of papillary exposure on intrarenal distribution of glomerular filtration rate and plasma flow. Acta Physiol Scand 138:61–66

    Article  CAS  PubMed  Google Scholar 

  15. Harley C, Wagner S (2003) The prevalence of cardiorenal risk factors in patients prescribed nossteroidal anti-inflammatory drugs: data from managed care. Clin Ther 25:139–149

    Article  CAS  PubMed  Google Scholar 

  16. Hellberg P, Källskog Ö, Wolgast M (1991) Red cell trapping and postischemic renal blood flow. Differences between the cortex, outer and inner medulla. Kidney Int 40:625–631

    Article  PubMed  Google Scholar 

  17. Higashi Y, Oshima T, Ozono R, Matsuura H, Kajiyama G (1997) Aging and severity of hypertension attenuate endothelium-dependent renal vascular relaxation in humans. Hypertension 30:252–258

    Article  CAS  PubMed  Google Scholar 

  18. Kennedy-Lydon TM, Crawford C, Widman SSP, Peppiat-Wildman CM (2013) Renal pericytes: regulators of medullary blood flow. Acta Physiol 207:212–225

    Article  CAS  Google Scholar 

  19. Lerman LO, Bentley MD, Fiksen-Olsen MJ, Strick DM, Ritman EL, Romero JC (1995) Pressure dependency of canine intrarenal blood flow within the range of autoregulation. Am J Physiol Ren Physiol 268:F404–F409

    CAS  Google Scholar 

  20. Llinás MT, González JD, Nava E, Salazar FJ (1997) Role of angiotensin II in the renal effects induced by nitric oxide and prostaglandin synthesis inhibition. J Am Soc Nephrol 8:543–550

    PubMed  Google Scholar 

  21. Lopez R, Llinas MT, Salazar E, Salazar FJ (2015) Renal effects of cyclooxygenase inhibition when nitric oxide synthesis is reduced and angiotensin II levels are enhanced. J Cardiovasc Pharmacol 65:465–472

    Article  CAS  PubMed  Google Scholar 

  22. Moreno C, Lopez A, Llinas MT, Rodriguez F, Lopez-Farre A, Nava E, Salazar FJ (2002) Changes in NOS activity and protein expression during acute and prolonged Ang II administration. Am J Physiol Regul Integr Comp Physiol 282:R31–R37

    CAS  PubMed  Google Scholar 

  23. Nakanishi K, Chinen A, Saito Y, Hamada K, Hara N, Nagai Y (2001) Nitric oxide buffers renal medullary vasoconstriction induced by prostaglandins synthesis blockade. Hypertens Res 24:699–704

    Article  CAS  PubMed  Google Scholar 

  24. Nobes MS, Harris PG, Yamada H, Mendelson FAO (1991) Effects of angiotensin on renal cortical and papillary blood flows measured by laser-Doppler flowmetry. Am J Physiol Ren Physiol 261:F998–F1006

    CAS  Google Scholar 

  25. Ortiz MC, Atucha NM, Lahera V, Vargas F, Quesada T, Garcia-Estañ R (1996) Importance of nitric oxide and prostaglandins in the control of rat renal papillary blood flow. Hypertension 27:377–381

    Article  CAS  PubMed  Google Scholar 

  26. Pallone TL (1994) Vasoconstriction of outer medullary vasa recta by angiotensin II is modulated by prostaglandin E2. Am J Physiol Ren Physiol 266:F850–F857

    CAS  Google Scholar 

  27. Pallone TL, Zhang Z, Rhinehart K (2003) Physiology of the renal medullary microcirculation. Am J Physiol Ren Physiol 284:F253–F266

    Article  CAS  Google Scholar 

  28. Parekh N, Zou AP (1996) Role of prostaglandins in renal medullary circulation: response to different vasoconstrictors. Am J Physiol Ren Physiol 271:F653–F658

    CAS  Google Scholar 

  29. Reckelhoff JF, Romero JC (2003) Role of oxidative stress in angiotensin-induced hypertension. Am J Physiol Regul Integr Comp Physiol 284:R893–R912

    Article  CAS  PubMed  Google Scholar 

  30. Rodriguez F, Llinas MT, Moreno C, Salazar FJ (2001) Role of cyclooxygenase-2-derived metabolites and NO in renal response to bradykinin. Hypertension 37:129–134

    Article  CAS  PubMed  Google Scholar 

  31. Roman RJ, Cowley AW, Garcia-Estañ J, Lombard J (1988) Pressure-diuresis in volume-expanded rats. Cortical and medullary hemodynamics. Hypertension 12:168–176

    Article  CAS  PubMed  Google Scholar 

  32. Salazar FJ, Llinás MT, González JD, Quesada T, Pinilla JM (1995) Role of prostaglandins and nitric oxide in mediating renal response to volume expansion. Am J Physiol Regul Integr Comp Physiol 268:R1442–R1448

    CAS  Google Scholar 

  33. Salazar FJ, Pinilla JM, Alberola A, Romero JC, Quesada T (1993) Salt-induced hypertension during inhibition of EDRF synthesis. Hypertension 22:49–55

    Article  CAS  PubMed  Google Scholar 

  34. Szentivanyl M, Zou AP, Mattson DL, Soares P, Moreno C, Roman RJ, Cowley AW Jr (2002) Renal medullary nitric oxide deficit of Dahl S rats enhances hypertensive actions of angiotensin II. Am J Physiol Regul Integr Comp Physiol 283:R266–R272

    Article  Google Scholar 

  35. Zou AP, Wu F, Cowley AW (1997) Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation. Hypertension 31:271–276

    Article  Google Scholar 

  36. Zwede T, Mattson DL (2004) Inhibition of cyclooxygenase-2 in the rat renal medulla leads to sodium-sensitive hypertension. Hypertension 44:424–428

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Dirección General de Investigación Científica y Técnica of Ministerio de Economía y Competitividad (BFU2013-49098R).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Javier Salazar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno, C., Llinás, M.T., Rodriguez, F. et al. Nitric oxide, prostaglandins and angiotensin II in the regulation of renal medullary blood flow during volume expansion. J Physiol Biochem 72, 1–8 (2016). https://doi.org/10.1007/s13105-015-0450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-015-0450-8

Keywords

Navigation