Skip to main content
Log in

A physiologically based pharmacokinetic model for nicotine and cotinine in man

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Physiologically based pharmacokinetic (PBPK) models have been developed describing the disposition kinetics of nicotine and its major metabolite, cotinine, in man. Separate 9-compartment, flow-limited PBPK models were initially created for nicotine and cotinine. The physiological basis for compartment designation and parameter selection has been provided;chemical-specific tissue-to-blood partition coefficients and elimination rates were derived from published human and animal data. The individual models were tested through simulations of published studies of nicotine and cotinine infusions in man using similar dosing protocols to those reported. Each model adequately predicted the time course of nicotine or cotinine concentrations in the blood and urine following the administration of nicotine or cotinine. These individual models were then linked through the liver compartments to form a nicotine-cotinine model capable of predicting the metabolic production and disposition of cotinine from administered nicotine. The potential for integrating this functional PBPK model with an appropriate pharmacodynamic model for the characterization of nicotine's physiological effects is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. W. D'Souza and H. Boxenbaum. Physiological pharmacokinetic models: some aspects of theory, practice and potential.Toxicol Ind. Health 4:151–171 (1988).

    PubMed  Google Scholar 

  2. M. E. Andersen. Tissue dosimetry, physiologically-based pharmacokinetic modeling, and cancer risk assessment.Cell Biol. Toxicol 5:405–416 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. H. Leung. Development and utilization of physiologically based pharmacokinetic models for toxicological applications.J. Toxicol. Environ. Health 32:247–267 (1991).

    Article  CAS  PubMed  Google Scholar 

  4. N. L. Benowitz and P. Jacob III. Metabolism pharmacokinetics, and pharmacodynamics of nicotine in man. In R. W. Martin, G. R. VanLoon, E. T. Iwamoto, and L. Davis (eds.),Advances in Behavioral Biology-Tobacco Smoking and Nicotine, Plenum Press, New York, 1988, pp. 357–374.

    Google Scholar 

  5. P. J. Murphy. Enzymatic oxidation of nicotine to nicotine-δ1(5)-iminium ion.J. Biol. Chem. 218:2796–2800 (1973).

    Google Scholar 

  6. J. W. Gorrod and P. Jenner. The metabolism of tobacco alkaloids. In W. J. Hayes (ed.),Essays in Toxicology 6, Academic Press, New York, 1975, pp. 35–78.

    Google Scholar 

  7. A. R. Hibberd and J. W. Gorrod. Nicotine-δ1(5)-iminium ion: A reactive intermediate in nicotine metabolism.Adv. Exp. Med. Biol. 136:1121–1131 (1981).

    PubMed  Google Scholar 

  8. R. S. Obach and H. V. Vunakis. Non-metabolic covalent binding of nicotine-δ1(5)-iminium ion to liver microsomes and sulfhydryl-containing polyamino acids.Biochem. Pharmacol. 37:4601–4604 (1988).

    Article  CAS  PubMed  Google Scholar 

  9. K. S. Kim, J. F. Borzelleca, E. R. Bowman, and H. McKennis. Effects of some nicotine metabolites and related compounds on isolated smooth muscle.J. Pharmacol. Exp. Ther. 161:59–69 (1968).

    CAS  PubMed  Google Scholar 

  10. J. F. Borzelleca, E. R. Bowman, and H. McKennis. Studies on the respiratory and cardiovascular effects of (−)-cotinine.J. Pharmacol. Exp. Ther. 137:313–318 (1962).

    CAS  PubMed  Google Scholar 

  11. P. Dominiak, G. Fuchs, S. von Toth, and H. Grobecker, Effects of nicotine and its major metabolites on blood pressure in anaesthetized rats.Klin. Wochenschr. 63:90–92 (1985).

    Article  CAS  PubMed  Google Scholar 

  12. R. Chanine, A. Calderone, and C. Navarro-Delmasure. Thein vitro effects of nicotine and cotinine on prostacyclin and thromboxane biosynthesis.Prostaglandins Leukot. Essent. Fatty Acids 40:261–266 (1990).

    Article  Google Scholar 

  13. G. A. Kyerematen, M. D. Damiano, B. H. Dvorchik, and E. S. Vessel. Smoking-induced changes in nicotine disposition: Application of a new HPLC assay for nicotine and its metabolites.Clin. Pharmacol. Ther. 32:769–780 (1982).

    Article  CAS  PubMed  Google Scholar 

  14. G. A. Kyerematen, M. L. Morgan, B. Chattopadhyay, J. D. deBethizy, and E. S. Vessell. Disposition of nicotine and 8 metabolites in smokers and nonsmokers: Identification in smokers of two metabolites that are longer lived than cotinine.Clin. Pharmacol. Ther. 48:641–651 (1990).

    Article  CAS  PubMed  Google Scholar 

  15. H. C. Porchet, N. L. Benowitz, L. B. Sheiner, and J. R. Copeland. Apparent tolerance to the acute effect of nicotine results in part from distribution kinetics.J. Clin. Invest. 80:1466–1471 (1987).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. H. C. Porchet, N. L. Benowitz, and L. B. Sheiner. Pharmacodynamic model of tolerance: Application to nicotine.J. Pharmacol. Exp. Ther. 244:231–236 (1988).

    CAS  PubMed  Google Scholar 

  17. F. Adlkofer, G. Scherer, L. Jarczyk, W. D. Heller, and G. B. Neurath. Pharmacokinetics of 3'-hydroxycotinine.Pharmacology of Nicotine. ICSU Symposium Series 9:25–28 (1988).

    Google Scholar 

  18. G. Scherer, L. Jaczy, W. D. Heller, A. Biber, G. B. Neurath, and F. Adlkofer. Pharmacokinetics of nicotine, cotinine, and 3'-hydroxycotinine in cigarette smokers.Klin. Wochenschr. 66 (Suppl 11):5–11 (1988).

    Google Scholar 

  19. N. L. Benowitz, P. Jacob III, R. T. Jones, and J. Rosenberg. Interindividual variability in the metabolism and cardiovascular effects of nicotine in man.J. Pharmacol. Exp. Ther. 221:368–372 (1982).

    CAS  PubMed  Google Scholar 

  20. B. L. Lee, N. L. Benowitz, and P. Jacob III. Influence of tobacco abstinence on the disposition kinetics and effects of nicotine.Clin. Pharmacol. Ther. 41:474–479 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. C. Feyerabend, R. M. J. Ings, and M. A. H. Russell. Nicotine pharmacokinetics and its application to intake from smoking.Br. J. Clin. Pharmacol. 19:239–247 (1985).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. N. L. Benowitz, F. Kuyt, P. Jacob III, R. T. Jones, and A. Osman. Cotinine disposition and effects.Clin. Pharmacol. Ther. 34:604–611 (1983).

    Article  CAS  PubMed  Google Scholar 

  23. P. J. DeSchepper, A. V. Hecken, P. Daenens, and J. M. Rossum. Kinetics of cotinine after oral and intravenous administration to man.Eur. J. Clin. Pharmacol. 31:583–588 (1987).

    Article  CAS  Google Scholar 

  24. M. Curvall, C. E. Elwin, E. Kazemi-Vala, C. Warholm, and C. R. Enzell. The pharmacokinetics of cotinine in plasma and saliva from non-smoking healthy volunteers.Eur. J. Clin. Pharmacol. 38:281–287 (1990).

    Article  CAS  PubMed  Google Scholar 

  25. J. D. deBethizy and M. E. Andersen. A physiologically-based pharmacokinetic (PB-PK) model for nicotine in the rat (Abstract).Toxicologist 10:862 (1990).

    Google Scholar 

  26. D. R. Plowchalk and J. D. deBethizy. A PB-PK model for nicotine tissue and plasma kinetics in the Sprague-Dawley rat (Abstract).Toxicologist 11:280 (1991).

    Google Scholar 

  27. J. Gabrielsson and U. Bondesson. Constant-rate infusion of nicotine and cotinine: A physiological pharmacokinetic analysis of the cotinine disposition, and effects on clearance and distribution in the rat.J. Pharmacokin. Biopharm. 15:583–599 (1987).

    Article  CAS  Google Scholar 

  28. S. L. Schwartz, R. T. Ball, and P. Witorsch. Mathematical modeling of nicotine and cotinine as biological markers of environmental tobacco smoke exposure.Toxicol. Lett. 35:53–58 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. R. T. Ball, O. Skliar, and S. L. Schwartz. CMATRIX, Georgetown University, Washington, DC, 1985.

    Google Scholar 

  30. D. I. Abramson.Circulation in the Extremities, Academic Press, New York, 1967, p. 207.

    Google Scholar 

  31. Q. P. Quiring.Collateral Circulation: Anatomical Aspects, Lea and Febiger, Philadelphia, 1949, p. 108.

    Google Scholar 

  32. C. F. Rothe. Venous system: physiology of the capacitance vessels. In J. T. Shepherd (ed.),Handbook of Physiology, Section 2, Vol. 3, Waverly Press, Baltimore, 1984, p. 397.

    Google Scholar 

  33. N. R. Davis and W. W. Mapleson. Structure and quantification of a physiological model of the distribution of injected agents and inhaled anaesthetics.Br. J. Anaesth. 53:399–404 (1981).

    Article  CAS  PubMed  Google Scholar 

  34. L. E. Gerlowski and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127 (1983).

    Article  CAS  PubMed  Google Scholar 

  35. L. R. Williams and R. W. Leggett. Resting values for resting blood flow to organs of man.Clin. Phys. Physiol. Meas. 10:187–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  36. R. W. Leggett and L. R. Williams. Suggested reference values for regional blood volumes in humans.Health Physics 60:139–154 (1991).

    Article  CAS  PubMed  Google Scholar 

  37. N. L. Benowitz. Pharmacokinetics and pharmacodynamics of nicotine. InPharmacology of Nicotine. ICSU Symposium Series 9:3–18 (1987).

    Google Scholar 

  38. H. Schievelbein. Nicotine, resorption and fate.Pharmacol. Ther. 18:233–248 (1982).

    Article  CAS  PubMed  Google Scholar 

  39. R. J. Sebalt and J. H. Kreeft. Efficient pharmacokinetic modeling of complex clinical dosing regimens: the universal elementary dosing regiment and computer algorithm EDFAST.J. Pharm. Sci. 76:93–100 (1987).

    Article  Google Scholar 

  40. R. E. Notari.Biopharmaceutics and Clinical Pharmacokinetics, 4th ed., Marcel Dekker Inc., New York, 1987, p. 49.

    Google Scholar 

  41. D. W. Sepkovic, N. J. Haley and D. Hoffmann. Elimination from the body of tobacco products by smokers and passive smokers (Letter to the Editor).J. Am. Med. Assoc. 256:863 (1986).

    Article  CAS  Google Scholar 

  42. M. Curvall and C. R. Enzell. Monotoring absorption by means of determination of nicotine and cotinine.Arch. Toxicol. Suppl. 9:88–102 (1986).

    Article  CAS  PubMed  Google Scholar 

  43. L. B. Scheiner, Clinical pharmacology and the choice between theory and empiricism.Clin. Pharmacol. Ther. 6:605–615 (1989).

    Article  Google Scholar 

  44. M. R. Gastonguay, N. J. Balter, and S. L. Schwartz. A physiologically-based pharmacokinetic (PBPK) model of nicotine and three metabolites (Abstract).Pharmacologist 32:141 (1990).

    Google Scholar 

  45. N. Y. Li, Y. Li, and J. W. Garrod. Determinations of pKa and partition coefficients of nicotine and related compounds (Abstract). Abstracts of IUTOX Satellite Meeting on Absorption, Distribution, Metabolism and Excretion of Nicotine and Related Alkaloids, Salsomaggiore Terme, Italy, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, D.E., Balter, N.J. & Schwartz, S.L. A physiologically based pharmacokinetic model for nicotine and cotinine in man. Journal of Pharmacokinetics and Biopharmaceutics 20, 591–609 (1992). https://doi.org/10.1007/BF01064421

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01064421

Key words

Navigation