Skip to main content
Log in

Methyl mercury uptake by free and immobilized cyanobacterium

  • Research Papers
  • Published:
Biometals Aims and scope Submit manuscript

Abstract

Methyl mercury uptake in free cells and different immobilizates of the cyanobacteriumNostoc calcicola has been examined. The general growth of the immobilized cyanobacterial cells could be negatively correlated with methyl mercury uptake. Alginate spheres proved most efficient in terms of uptake rate (0.48 nmol mg protein−1 min−1, 10 min) and total bioaccumulation (10.71 nmol mg protein−1, 1 h) with a bioconcentration factor of 3.3×103. Alginate biofilms showed a faster methyl mercury accumulation rate (0.83 nmol mg protein−1 min−1, 10 min) with a saturation of 10.28 nmol mg protein−1 reached within only 30 min (bioconcentration factor, 3.1×103). Foam preparations with a slow initial uptake approximated biofilms but were characterized by a lower bioconcentration factor (2.8×103). Free cells, in comparison, maintained the initial slow rate of uptake (0.62 nmol mg protein−1 min−1, 10 min), saturating at 30 min (8.81 nmol mg protein−1), and the resultant lowest bioconcentration factor (2.7×103). Cell ageing (30 days) brought a drastic reduction (3-fold) in organomercury uptake by free cells while alginate spheres maintained the same potential. Foam preparations of the same age showed a significant improvement in methyl mercury uptake followed by only a marginal decline in alginate biofilms. Data are discussed in the light of the physiological efficiency and longevity of immobilized cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Affolter D, Hall DO. 1986 Long term stability of photosynthetic electron transport in polyvinyl foam immobilized cyanobacteria.Photobiochem Photobiophys 11, 193–201.

    Google Scholar 

  • Allen MB, Arnon DI. 1955 Studies on nitrogen-fixing blue-green algae. I. Growth and nitrogen fixation byAnabaena cylindrica Lemm.Plant Physiol 30, 366–372.

    Google Scholar 

  • Brouers M, Hall DO. 1986 Ammonia and hydrogen production by immobilized cyanobacteria.J Biotechnol 3, 307–321.

    Google Scholar 

  • Campbell PM, Smith GD. 1986 Transport and accumulation of nickel ions in the cyanobacteriumAnabaena cylindrica.Arch Biochem Biophys 244, 470–477.

    PubMed  Google Scholar 

  • DeFilippis LF, Pallaghy CK. 1976a Effect of sublethal concentration of mercury and zinc onChlorella. 1. Growth characteristics and uptake of metals.Z Pflanzenphysiol 78, 197–207.

    Google Scholar 

  • DeFilippis LF, Pallaghy CK. 1976b Effect of sublethal concentration of mercury and zinc onChlorella 3. Development and possible mechanisms of resistance to metals.Z Pflanzenphysiol 78, 323–335.

    Google Scholar 

  • Gendel SM, Nohr RS. 1989 Growth and nitrogen fixation by immobilized cyanobacteria.Appl Microbiol Biotechnol 31, 138–145.

    Google Scholar 

  • Hassett JM, Jennett JC, Smith JE. 1981 Microplate technique for determining accumulation of metals by algae.Appl Environ Microbiol 41, 1097–1106.

    Google Scholar 

  • Havlik B, Starý J, Prášilová J, Kratzer K, Hanušová J. 1979 Mercury circulation in aquatic environment. Part 2: metabolism of methyl and phenyl mercury in phytoplankton.Acta Hydrochim Hydrobiol 4, 401–408.

    Google Scholar 

  • Herbert D, Phipps PJ, Strange RE. 1971 Chemical analysis of microbial cells.Methods Enzymol VB, 209–344.

    Google Scholar 

  • Hutchins SR, Davidson MS, Brierley JA, Brierley CL. 1986 Microorganisms in reclamation of metals.Annu Rev Microbiol 40, 311–336.

    PubMed  Google Scholar 

  • Jeanfils J, Loudeche R. 1986 Photoproduction of ammonia by immobilized heterocystic cyanobacteria: effect of nitrate and anaerobiosis.Biotechnol Lett 8, 265–270.

    Google Scholar 

  • Johnson PE, Shubert LE. 1986 Accumulation of mercury and other elements bySpirulina (Cyanophyceae).Nutr Rep Int 34, 1063–1070.

    Google Scholar 

  • Les A, Walker RW. 1984 Toxicity and binding of copper, zinc and cadmium by the blue-green algaChroococcus paris.Water Air Soil Pollut 23, 129–139.

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. 1951 Protein measurements with the Folin-Phenol reagent.J Biol Chem 193, 265–275.

    PubMed  Google Scholar 

  • Macaskie LE, Dean ACR. 1987 Use of immobilised biofilm ofCitrobacter sp. for the removal of uranium and lead from aqueous flows.Enzyme Microb Technol 9, 2–4.

    Google Scholar 

  • Matsunaga T, Takeyama H, Sudo H, et al., 1991 Glutamate production from CO2 by a marine cyanobacteriumSynechococcus sp. using a novel biosolar reactor employing light-diffusing optical fibers.Appl Biochem Biotechnol 28/29, 157–167.

    Google Scholar 

  • McHardy BM, George JJ. 1990 Bioaccumulation and toxicity of zinc in the green algaCladophora glomerata.Environ Pollut 66, 55–66.

    PubMed  Google Scholar 

  • Mora B, Fabregas J. 1980 The effect of inorganic and organic mercury on growth kinetics ofNitzschia acicularis W.Sm. andTetraselmia suecica Butch.Can J Microbiol 26, 930–937.

    PubMed  Google Scholar 

  • Muallem A, Bruce D, Hall DO. 1983 Photoproduction of H2 and NADPH2 by polyurethane-immobilized cyanobacteria.Biotechnol Lett 5, 365–368.

    Google Scholar 

  • Musgrave SC, Kerby NW, Codd GA, Stewart WDP. 1982 Sustained ammonia production by immobilized filaments of the nitrogen-fixing cyanobacteriumAnabaena 27893.Biotechnol Lett 4, 647–652.

    Google Scholar 

  • Papageorgiou GC, Kalosaka K, Sotiropoulou G, Barbotin JN, Thomasett B, Thomas T. 1988 Entrapment of active ion-permeable cyanobacteria (Anacystis nidulans) in calcium alginate.Appl Microbiol Biotechnol 29, 565–571.

    Google Scholar 

  • Park IH, Rao KK, Hall DO. 1991 Photoproduction of hydrogen, hydrogen peroxide and ammonia using immobilized cyanobacteria.Int J Hydrogen Energy 16, 313–318.

    Google Scholar 

  • Pettersson A, Hällbom L, Bergman B. 1986 Aluminium uptake byAnabaena cylindrica.J Gen Microbiol 132, 1771–1774.

    Google Scholar 

  • Potts M. 1985 Protein synthesis and proteolysis in immobilized cells of the cyanobacteriaNostoc commune UTEX 584 exposed to matric water stress.J Bacteriol 164, 1025–1031.

    PubMed  Google Scholar 

  • Ramamoorthy S, Cheng TC, Kushner DJ. 1983 Mercury speciation in water.Can Fish Aquat Sci 40, 85–89.

    Google Scholar 

  • Röderer G. 1983 Differential toxic effects of mercuric chloride on the fresh water algaPoterioochromonas malhamensis.Aquat Toxicol 3, 23–34.

    Google Scholar 

  • Röderer G. 1983. Differential toxic effects of mercuric chloride on the fresh water algaPoterioochromonas malhamensis.Aquat Toxicol 3, 23–34.

    Google Scholar 

  • Shehata FHA, Whitton BA. 1982 Zinc tolerance in strains of the blue-green algaAnacystic nidulans.Br Phycol J 17, 5–12.

    Google Scholar 

  • Shi DJ, Brouers M, Hall DO, Robins RJ. 1987 The effect of immobilization on the biochemical, physiological and morphological features ofAnabaena azollae.Planta 172, 298–308.

    Google Scholar 

  • Shumate SE, Strandberg GW. 1985 Accumulation of metals by microbial cells. In:Comprehensive Biotechnology. New York: Pergamon Press: 4; 235–247.

    Google Scholar 

  • Singh CB, Singh SP. 1992 Protective effects of Ca2+, Mg2+, Cu2+ and Ni2+ on mercury and methyl mercury toxicity to a cyanobacterium.Ecotoxicol Environ Safety 23, 1–10.

    PubMed  Google Scholar 

  • Singh DP. 1985 Cu2+ transport in the unicellular cyanobacteriumAnacystis nidulans.J Gen Appl Microbiol 31, 277–284.

    Google Scholar 

  • Singh SP, Yadava V. 1985 Cadmium uptake inAnacystis nidulans: effect of modifying factors.J Gen Appl Microbiol 31, 39–48.

    Google Scholar 

  • Singh SP, Verma SK, Singh RK, Pandey PK. 1989 Copper uptake by free and immobilized cyanobacterium.FEMS Microbiol Lett 60, 193–196.

    Google Scholar 

  • Vincenzini M, Balloni W, Mannelli D, Florenzano G. 1981 A bioreactor for continuous treatment of waste water with immobilized cells of photosynthetic bacteria.Experientia 37, 710–712.

    Google Scholar 

  • Wilkinson SC, Goulding KH, Robinson PK. 1989 Mercury accumulation and volatilization in immobilized algal cell systems.Biotechnol Lett 11, 861–864.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pant, A., Srivastava, S.C. & Singh, S.P. Methyl mercury uptake by free and immobilized cyanobacterium. Biometals 5, 229–234 (1992). https://doi.org/10.1007/BF01061223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061223

Keywords

Navigation