Skip to main content
Log in

Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

A set of experiments was conducted to provide significant insights of micro-algal consortia regarding chromium adsorption. Four monocultures; Scenedesmus dimorphus, Chlorella sp., Oscillatoria sp., and Lyngbya sp., and their synthetic consortia were evaluated initially for chromium bio-adsorption at four different regimes of hexavalent chromium i.e. 0.5, 1.0, 3.0 and 5.0 ppm. Based on findings, only 1.0 and 5.0 ppm were considered for future experiments. Consequently, three different types of monoculture and consortia cells namely; live cells, heat-killed cells, and pre-treated cells were prepared to enhance their adsorption potential. Maximal adsorption of 112% was obtained at the dose of 1.0 ppm with 0.1% SDS pre-treated consortia cells over live consortia cells. In support, atomic absorption spectroscopy, laser induced breakdown spectroscopy, pulse amplitude modulated chlorophyll fluorescence, and scanning electron microscopy were performed to assess the structural and functional changes within consortia and their utilization in mitigation of elevated chromium levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adinath RA, Singh SK, Dixit K, Sundaram S (2015) Chromium induced alterations in different individual microalga and their consortia. IJONS 6(32)

  • Ahuja P, Gupta R, Saxena RK (1999) Zn2+ biosorption by Oscillatoria anguistissima. Process Biochem 34:77–85

    Article  CAS  Google Scholar 

  • Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels. Front Bieng Biotechnol 2:1–13

    Google Scholar 

  • Berg AK, Lyra C, Sivonen K, Paulin L, Suoimalainen S, Tuomi P, Rapala J (2009) High diversity cultivable heterotrophic bacteria in association with cyanobacterial water blooms. ISME J 3:314–325

    Article  CAS  PubMed  Google Scholar 

  • Bharti N, Pandey SS, Barnawal D, Patel VK, Kalra A (2016) Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci Rep 6:34768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose SC, Suresh R, Ramakrishnan B, Megharaj M, Venkateshwarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907

    Article  Google Scholar 

  • Brenner N, Joseph B, Jones M (2008) Theorizing sociospatial relations. Environ Plan D Soc Sp 26:389–401

    Article  Google Scholar 

  • Brun LA, Maillet J, Richarte J, Herrmann P, Remy JC (1998) Relationship between extractable copper, soil properties and copper uptake by wild plant in vineyard soils. Environ Pollut 102:151–161

    Article  CAS  Google Scholar 

  • Cardinale BJ (2011) Biodiversity improves water quality through niche partitioning. Nature 472:86–89

    Article  CAS  PubMed  Google Scholar 

  • Cardinale BJ, Srivastava DS, Duffy JE, Wright PJ, Downing LA, Sankaran M, Jouseau C (2006) Effect of biodiversity on the functioning of trophic groups and ecosystems. Lett Nat 443(7114):989–992. doi:10.1038/nature05202

    Article  CAS  Google Scholar 

  • Cardinale BJ, Wright JP, Cadotte MW, Carroll IT, Hector A, Srivastava DS, Loreau M, Weis JJ (2007) Impacts of plant diversity on biomass production increase through time because of species complementarity. PNAS 104(46):18123–18128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutierrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty N, Banerjee A, Pal R (2011) Bio monitoring of lead, cadmium and chromium in environmental water from Kolkata, North and South 24-Parganas using algae as bioreagent. J Algal Biomass Utln 2(3):27–41

    Google Scholar 

  • Chekroun KB, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880

    Google Scholar 

  • Dixit RB, Patel AK, Toppo K, Nayaka S (2017) Emergence of toxic cyanobacteria species in the Ganga River, India, due to excessive nutrient loading. Ecol Indic 72:420–427

    Article  CAS  Google Scholar 

  • Dwivedi S, Srivastava S, Mishra S, Kumar A, Tripathi RD, Rai UN, Dave R, Tripathi P, Charkrabarty D, Trivedi PK (2010) Characterization of native micro-algal strains for their chromium bioaccumulation potential: phytoplankton response in polluted habitats. J Hazard Mater 173(1–3):95–101

    Article  CAS  PubMed  Google Scholar 

  • Fisher NS, Bohw M, Teyssie JL (1984) Accumulation and toxicity of Cd, Zn, Hg and Ag in the marine phytoplanktons. Mar Ecol Prog Ser 18:201–204

    Article  CAS  Google Scholar 

  • Fox JW (2004) Effect of algal and herbivore diversity of the partioning of biomass within and among trophic levels. Ecol Ecol Soc Am 85(2):549–559

    Google Scholar 

  • Gloaguen V, Morvan H, Hoffmann L (1996) Metal accumulation by immobilized cyanobacterial mats from a thermal spring. J Environ Sci Health A31(10):2437–2451

    CAS  Google Scholar 

  • Govindjee (2005) Announcement: advances in photosynthesis and respiration, volume 19: ‘Chlorophyll a fluorescence: a signature of photosynthesis’, edited by George C. Papageorgiou and Govindjee. Photosynth Res 83:101–105

    Google Scholar 

  • Gross K, Cardinale BJ, Fox WJ, Gonzalez A, Loreau M, Polly WH, Reich BP, Ruiwen VJ (2014) Species richness and the temporal stability of biomass production: a new analysis of recent biodiversity experiments. Am Nat 183:1–12

    Article  PubMed  Google Scholar 

  • He Z, Piceno Y, Deng Y, Xu M, Lu Z, De Santis T, Andersen G, Hobbie ES, Reich BP, Zhou J (2012) The phylogenetic composition and structure of soil microbial communities shifts in response to elevated carbon dioxide. ISME J 6:259–272

    Article  CAS  PubMed  Google Scholar 

  • Holt NE, Fleming GR, Niyogi KK (2004) Toward an understanding of the mechanism of nonphotochemical quenching in green plant. Biochemistry 43(26):8281–8289

    Article  CAS  PubMed  Google Scholar 

  • Iara R, Hendrik K (2009) Chromium and copper-induced inhibition of photosynthesis in Euglena gracilis analysed on the single-cell level by fluorescence kinetic microscopy. New Phytol 181:405–420

    Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol 7(2):60–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Jayashree S, Thangaraju N, Gnanadoss JJ (2012) Toxic effects of chromium on the aquatic cyanobacterium Oscillatoria spand removal of chromium by biosorption. J Exp Sci 3(5):28–34

    CAS  Google Scholar 

  • Khalida Z, Amar Y, Boutiba Z, Zemri M, Popovic R (2012) Use of chlorophyll fluorescence to evaluate the effect of chromium on activity photosystem II at the alga Scenedesmus obliquus. IJRRAS 12(2):304–314

    CAS  Google Scholar 

  • Kumar R, Tripathi DK, Devanathan A, Chauhan DK, Rai AK (2014) In-situ monitoring of chromium uptake in different parts of the wheat seedling (Triticum aestivum) using laser-induced breakdown spectroscopy. Spectros Lett 47(7):554–563

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Sci 294:804–808

    Article  CAS  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence: a practical guide. J Exp Bot 51(345):659–668

    CAS  PubMed  Google Scholar 

  • Micheli C, Cianchi R, Paperi R, Belmonte A, Pushparaj B (2014) Antarctic cyanobacteria biodiversity based on its and TRNL sequencing and its ecological implication. Open J Ecol 4:456–467

    Article  Google Scholar 

  • Ortiz-Marquez JCF, Do Nascimento M, Zehr JP, Curatti L (2013) Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. Trends Biotechnol 31(9):521–529

    Article  CAS  PubMed  Google Scholar 

  • Patel VK, Maji D, Singh AK, Sussela MR, Sundaram S, Alok K (2014) A natural plant growth promoter, caliterpenone, enhances growth and biomass, carbohydrate and lipid production in cyanobacterium Synechocystis PCC 6803. J Appl Phycol 26:279–286

    Article  CAS  Google Scholar 

  • Patel VK, Maji D, Pandey SS, Rout PK, Sundaram S, Kalra A (2016) Rapid budding EMS mutants of Synechocystis PCC6803 producing carbohydrate or lipid enriched biomass. Algal Res 16:36–45

    Article  Google Scholar 

  • Patel VK, Sahoo NK, Patel AK, Rout PK, Naik SN, Kalra A (2017) Exploring microalgae consortia for biomass production: a synthetic ecological engineering approach towards sustainable production of biofuel feedstock. In: Gupta SK et al (eds) Algal biofuels. Springer, New York. ISBN 978-3-319-51009-5

    Google Scholar 

  • Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10

    Article  CAS  PubMed  Google Scholar 

  • Pereira M, Bartolome MC, Sanchez FS (2013) Bio-adsorption and bioaccumulation of chromium trivalent in Cr(III)-tolerant microalgae: a mechanism for chromium resistance. Chemosphere 93(6):1057–1063

    Article  CAS  PubMed  Google Scholar 

  • Power DL, Cardinale BJ (2009) Species richness enhances both algal biomass and rates of oxygen production in aquatic microcosms. Oikos 118:1703–1711

    Article  Google Scholar 

  • Rabsch V, Elbracher R (1980) Cadmium and zinc uptake growth and primary production in coscinodiscus granii cultures containing low level of cells and dissolved organic carbon. Helgol Wiss Meeresuter 33:79–88

    Article  Google Scholar 

  • Renuka N, Sood A, Ratha KS, Prasanna R, Ahluwalia SA (2013) Evaluation of micro algal consortia for treatment of primary treated sewage effluent and biomass production. J Appl Phycol 25:1529–1537

    Article  CAS  Google Scholar 

  • Ruffing AM, Trahan CA (2014) Biofuel toxicity and mechanisms of biofuel tolerance in three model cyanobacteria. Algal Res 5:121–132

    Article  Google Scholar 

  • Shukla D, Padma SV, Srivastava SK (2012) Bioremediation of hexavalent chromium by a cyanobacterial mat. Appl Water Sci 2:245–251

    Article  CAS  Google Scholar 

  • Silva-Rocha R, de Lorenzo V (2010) Noise and robustness in prokaryotic regulatory network. Annu Rev Microbiol 64(257–275):2010

    Google Scholar 

  • Singhvi P, Chhabra M (2013) Simultaneous chromium removal and power generation using algal biomass in a dual chambered salt bridge microbial fuel cell. J Bioremed Biodegrad 4:190

    Google Scholar 

  • Spolaore P, Joannis CC, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  PubMed  Google Scholar 

  • Status of Chromium and copper from water pipes Lea d and Copper rule under SDWA (Safe Drinking Water Agency) (1991)

  • Stevenson J (2014) Ecological assessments with algae: a review and synthesis. J Phycol 50:437–461

    Article  PubMed  Google Scholar 

  • Stohs JS, Bagchi D, Hassoun E, Bagchi M (2001) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol 19(3):201–213

    Google Scholar 

  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ (2012) Heavy metals toxicity and the environment. EXS.101, pp 133–164

  • Tilman D, Wedin D, Knops J (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystem. Nature 379(6567):718

    Article  CAS  Google Scholar 

  • Volland S, Elisabeth B, Verena B, Ancuela A, Cornelius L, Evelyn S, Ursula LM (2013) Rescue of heavy metal effects on cell physiology of the algal model system micrasterias by divalent ions. J Plant Physiol 171:154–163

    Article  PubMed  Google Scholar 

  • Weis JJ, Madrigal SD, Cardinale JB (2008) Effects of algal diversity on the production of biomass in homogeneous and heterogeneous nutrient environments: a microcosm experiment. PLoS ONE 3(7):e2825. doi:10.1371/Journal.pone.0002825

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization, Geneva (1988) Chromium in Drinking Water. (Criteria No. 61) p 4

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Zinc, lead and cadmium tolerance, uptake and accumulation in population of Phragmites australis (Cav.) Trin. Ex Steudel. Ann Bot 80:363–370

    Article  CAS  Google Scholar 

  • Zhang X, Zhao X, Wan C, Chen B, Bai F (2016) Efficient biosorption of cadmium by the self-flocculating microalga Scenedesmus obliquus AS-6-1. Algal Res 16:427–433

    Article  Google Scholar 

  • Zimmerman KE, Cardinale JB (2014) Is the relationship between algal diversity and biomass in North American lakes consistent with biodiversity experiments? Oikos 123:267–278

    Article  Google Scholar 

Download references

Acknowledgements

Adinath is thankful to UGC New Delhi, India for providing him UGC-D.Phil research fellowship.

Author’s contributions

Shanthy Sundaram and Adinath designed the experiments, Adinath performed all the experiments. P K Tiwari and AK Rai helped Adinath in elemental analysis of chromium. Adi Nath and Shanthy Sundaram drafted the manuscript, Shanthy Sundaram reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanthy Sundaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nath, A., tiwari, P.K., Rai, A.K. et al. Microalgal consortia differentially modulate progressive adsorption of hexavalent chromium. Physiol Mol Biol Plants 23, 269–280 (2017). https://doi.org/10.1007/s12298-017-0415-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-017-0415-1

Keywords

Navigation