Skip to main content
Log in

Physiologically based pharmacokinetics of drug-drug interaction: A study of tolbutamide-sulfonamide interaction in rats

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

A blood flow rate-limited pharmacokinetic model was developed to study the effect of sulfonamide on the plasma elimination and tissue distribution of14C -tolbutamide (TB) in rats. The sulfonamides (SA) used were sulfaphenazole (SP), sulfadimethoxine (SDM), and sulfamethoxazole (SMZ). The tissue-to-plasma partition coefficients (Kp) of all tissues studied, i.e., lung, liver, heart, kidney, spleen, G.I. tract, pancreas, brain, muscle, adipose tissue, and skin, increased in the presence of SA, but except for brain, liver, and spleen, the tissue-to-plasma unbound concentration ratio (Kp, f) of other tissues did not show a significant alteration. This suggested that the tissue binding of TB is not affected by SA and that the increase of Kp is due mainly to the displacement of plasma protein-bound TB by SA. The concentrations of TB in several tissues and plasma were predicted by a physiologically based pharmacokinetic model using in vitro plasma binding and metabolic parameters, the plasma-to-blood concentration ratio and the tissue-to-plasma unbound concentration ratios having been determined from both the tissue and plasma concentrations of TB at the β-phase after intravenous administration of TB and the plasma free fraction. The predicted concentration curves of TB in each tissue and in plasma showed good agreement with the observed values except for the brain, for which the predicted concentrations were lower than the observed values in the early time period. In the SP- and SDM-treated rats, the predicted free concentration of TB in the target organ, the pancreas, at 6 h was six times higher than that of the control rats. From these findings, it is suggested that physiologically based pharmacokinetic analysis could be generally useful to predict approximate plasma and tissue concentrations of a drug in the presence of drug-drug interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

V :

volume of tissue, ml

Q :

blood flow rate through tissue, ml/min

C :

tissue or blood concentration of tolbutamide, μg/ml

Kp :

tissue-to-plasma partition coefficient of tolbutamide

Kp B :

tissue-to-blood partition coefficient of tolbutamide

Kp,f :

tissue-to-plasma unbound concentration ratio of tolbutamide

S :

plasma-to-blood concentration ratio of tolbutamide

f p :

plasma free fraction of tolbutamide

n :

number of binding site

(p):

concentration of plasma protein, mM

K d :

dissociation constant of plasma protein binding, mM

v :

oxidative metabolic rate of tolbutamide, μmol tolbutamide metabolized/min/12.4 g of liver

V max :

maximum velocity, μmol tolbutamide metabolized/min/12.4 g of liver

K m :

Michaelis constant, mM

λ :

reciprocal of the injection time, min/s-1

B :

blood

P :

plasma

Li :

liver

K :

kidney

G.I. :

gastrointestinal tract

Lu :

lung

H :

heart

M :

muscle

Br :

brain

Pa :

pancreas

Sp :

spleen

Ad :

adipose

Sk :

skin

Ar :

arterial blood

Ve :

venous blood

References

  1. R. L. Dedrick and K. B. Bischoff. Pharmacokinetics in application of the artificial kidney.Chem. Eng. Prog. Symp. Ser. 64:32–44 (1968).

    CAS  Google Scholar 

  2. H. S. G. Chen and J. F. Gross. Physiologically based pharmacokinetic models for anticancer drugs (general review).Cancer Chemother. Pharmacol. 2:85–94 (1979).

    Article  CAS  PubMed  Google Scholar 

  3. K. J. Himmelstein and R. J. Lutz. A review of the application of physiologically based pharmacokinetic modeling.J. Pharmacokin. Biopharm. 7:127–145 (1979).

    Article  CAS  Google Scholar 

  4. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man I. Prediction by a perfusion model.Clin. Pharmacol. Ther. 16:87–98 (1974).

    CAS  PubMed  Google Scholar 

  5. N. Benowitz, R. P. Forsyth, K. L. Melmon, and M. Rowland. Lidocaine disposition kinetics in monkey and man II. Effects of hemorrhage and sympathomimetic drug administration.Clin. Pharmacol. Ther. 16:99–109 (1974).

    CAS  PubMed  Google Scholar 

  6. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to humans.J. Pharm. Sci. 66:1679–1683 (1977).

    Article  CAS  PubMed  Google Scholar 

  7. K. B. Bischoff and R. L. Dedrick. Thiopental pharmacokinetics.J. Pharm. Sci. 57:1346–1351 (1968).

    Article  CAS  PubMed  Google Scholar 

  8. K. B. Bischoff, R. L. Dedrick, D. S. Zaharko, and J. A. Longstreth. Methotrexate pharmacokinetics.J. Pharm. Sci. 60:1128–1133 (1971).

    Article  CAS  PubMed  Google Scholar 

  9. R. L. Dedrick, D. D. Forrester, J. N. Cannon, S. M. E. Dareer, and L. B. Mellett. Pharmacokinetics of 1-β-arabinofuranosylcytosine (ARA-C) deamination in several species.Biochem. Pharmacol. 22:2405–2417 (1973).

    Article  CAS  PubMed  Google Scholar 

  10. B. Montadon, R. J. Roberts, and L. J. Fischer. Computer simulation of sulfobromophthalein kinetics in the rat using flow-limited models with extrapolation to man.J. Pharmacokin. Biopharm. 3:277–290 (1975).

    Article  Google Scholar 

  11. P. A. Harris and J. F. Gross. Preliminary pharmacokinetic model for adriamycin (NSC-123127).Cancer Chemother. Rep. Part I,59:819–825 (1975).

    CAS  PubMed  Google Scholar 

  12. L. I. Harrison and M. Gibaldi. Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat.J. Pharm. Sci. 66:1138–1142 (1977).

    Article  CAS  PubMed  Google Scholar 

  13. R. H. Smith, D. H. Hunt, A. B. Seifen, A. Ferrari, and D. S. Thompson. Pharmacokinetic model for procaine in humans during and following intravenous infusion.J. Pharm. Sci. 68:1016–1024 (1979).

    Article  CAS  PubMed  Google Scholar 

  14. R. H. Luecke and W. D. Wosilait. Drug elimination interactions: analysis using a mathematical model.J. Pharmacokin. Biopharm. 7:629–641 (1979).

    Article  CAS  Google Scholar 

  15. E. Schulz and F. H. Schmidt. Abbauhemmung von tolbutamid durch sulfaphenazol beim menschen.Pharmacol. Clin. 2:150–154 (1970).

    Article  CAS  Google Scholar 

  16. M. Kristensen and L. K. Christensen. Drug induced changes of the blood glucose lowering effect of oral hypoglycemic agents. In C. A. Loubatieres and A. E. Rengold (eds.),Pharmacology and Mode of Oral Hypoglycemic Agents, Vol. VI. Casea Editrice “Li Ponte”, Milano, 1969 pp. 116–136.

    Google Scholar 

  17. M. Rowland and S. B. Matin. Kinetics of drug-drug interactions.J. Pharmacokin. Biopharm. 1:553–567 (1973).

    Article  CAS  Google Scholar 

  18. S. M. Pond, D. J. Birkett, and D. N. Wade. Mechanisms of inhibition of tolbutamide metabolism: phenylbutazone, oxyphenbutazone, sulfaphenazole.Clin. Pharmacol. Ther. 22:573–579 (1977).

    CAS  PubMed  Google Scholar 

  19. J. Shibasaki, R. Konishi, and K. Yamasaki. Tolbutamide-sulfaphenazole interaction in rabbits.J. Pharmacokin. Biopharm. 5:277–290 (1977).

    Article  CAS  Google Scholar 

  20. J. J. Thiessen and M. Rowland. Kinetics of drug-drug interactions in sheep; tolbutamide and sulfadimethoxine.66:1063–1070 (1977).

    CAS  Google Scholar 

  21. Y. J. Lin, S. Awazu, and M. Hanano. Inhibitory mechanism of sulfaphenazole on tolbutamide elimination from plasma in rats.J. Pharm. Dyn. 2:273–285 (1979).

    Article  CAS  Google Scholar 

  22. O. Sugita, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Prediction of drug-drug interaction fromin vitro plasma protein binding and metabolism. A study of tolbutamide-sulfonamides interaction in rats.Biochem. Pharmacol. 30:3347–3354 (1981).

    Article  CAS  PubMed  Google Scholar 

  23. M. Hanano. Library program (D2/TC/RKM) of the University of Tokyo Computer Center, Tokyo, Japan (1980).

  24. R. L. Dedrick. Animal scale-up.J. Pharmacokin. Biopharm. 1:435–461 (1973).

    Article  CAS  Google Scholar 

  25. Y. Sasaki and H. N. Wagner. Measurement of the distribution of cardiac output in unanesthetized rats.J. Appl. Physiol. 30:879–884 (1971).

    CAS  PubMed  Google Scholar 

  26. R. L. Dedrick, D. S. Zaharko, and R. J. Lutz. Transport and binding of methotrexatein vivo. J. Pharm. Sci. 62:882–890 (1973).

    Article  CAS  PubMed  Google Scholar 

  27. R. J. Lutz, R. L. Dedrick, H. B. Matthews, T. E. Eling, and M. W. Anderson. A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat.Drug Metab. Dispos. 5:386–396 (1977).

    CAS  PubMed  Google Scholar 

  28. H. S. G. Chen and J. F. Gross. Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models.J. Pharmacokin. Biopharm. 7:117–125 (1979).

    Article  CAS  Google Scholar 

  29. J. R. Gillette. InHandbook of Experimental Pharmacology, Vol. 28, Concepts in Biochemical Pharmacology, Part 3. chap. 60, Springer-Verlag, Berlin, 1975, Chap. 60, pp. 35–85.

    Book  Google Scholar 

  30. H. Y. Yu, Y. Sawada, Y. Sugiyama, T. Iga, and M. Hanano. Effect of sulfadimethoxine on thiopental distribution and elimination in rats.J. Pharm. Sci. 70:323–326 (1981).

    Article  CAS  PubMed  Google Scholar 

  31. B. Fichtl, H. Kurz, I. Wachter, and A., Ziegler. Binding of drugs to muscle tissue: drug interactions.Naunyn-Schmideberg's Arch. Pharmacol. 302:R2 (1978).

    Google Scholar 

  32. W. M. Wardell. Drug displacement from protein binding: source of the sulphadoxine liberated by phenylbutazone.Br. J. Pharmacol. 43:325–334 (1971).

    CAS  PubMed Central  PubMed  Google Scholar 

  33. A. Roos and W. F. Boron. Intracellular pH.Physiol. Rev. 61:296–434 (1981).

    CAS  PubMed  Google Scholar 

  34. R. Spector and A. V. Lorenzo. The effects of salicylate and probenecid on the cerebrospinal fluid transport of penicillin, aminosalicyclic acid and iodide.J. Pharmacol. Exp. Ther. 183:55–65 (1974).

    Google Scholar 

  35. J. Sehlin. Evidence of specific binding of tolbutamide of the plasma of pancreatic β-cells.Acta Disbetol. Lat. 10:1052–1060 (1973).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This study was supported by a grant-in-aid for Scientific Research provided by the Ministry of Education, Science and Culture of Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sugita, O., Sawada, Y., Sugiyama, Y. et al. Physiologically based pharmacokinetics of drug-drug interaction: A study of tolbutamide-sulfonamide interaction in rats. Journal of Pharmacokinetics and Biopharmaceutics 10, 297–316 (1982). https://doi.org/10.1007/BF01059263

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01059263

Key words

Navigation