Skip to main content
Log in

Interpretation of high-dimensional numerical results for the Anderson transition

  • Special issue in honor of A.F. Andreev’s 75th birthday Issue Editor: I.A. Fomin
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of the upper critical dimension d c2 = 4 for the Anderson transition is a rigorous consequence of the Bogoliubov theorem on renormalizability of φ4 theory. For d ≥ 4 dimensions, one-parameter scaling does not hold and all existent numerical data should be reinterpreted. These data are exhausted by the results for d = 4, 5 from scaling in quasi-one-dimensional systems and the results for d = 4, 5, 6 from level statistics. All these data are compatible with the theoretical scaling dependences obtained from Vollhardt and Wolfle’s self-consistent theory of localization. The widespread viewpoint that d c2 = ∞ is critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields (Nauka, Moscow, 1976; Wiley, New York, 1980).

    Google Scholar 

  2. E. Brezin, J. C. Le Guillou, and J. Zinn-Justin, in Phase Transitions and Critical Phenomena, Ed. by C. Domb and M. S. Green (Academic, New York, 1976), Vol. VI.

  3. S. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, Massachusetts, United States, 1976).

    Google Scholar 

  4. A. Nitzan, K. F. Freed, and M. N. Cohen, Phys. Rev. 15, 4476 (1977).

    Article  ADS  Google Scholar 

  5. M. V. Sadovskii, Sov. Phys.—Usp. 24, 96 (1981)

    Article  ADS  Google Scholar 

  6. I. M. Suslov, Phys—Usp. 41, 441 (1998).

    ADS  Google Scholar 

  7. J. J. M. Verbaarschot and M. R. Zirnbauer, J. Phys. A: Math. Gen. 18, 1093 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  8. M. R. Zirnbauer, cond-mat/9903338.

  9. E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V. Ramakrishman, Phys. Rev. Lett. 42, 673 (1979).

    Article  ADS  Google Scholar 

  10. I. M. Suslov, J. Exp. Theor. Phys 114(1), 107 (2012).

    Article  ADS  Google Scholar 

  11. I. M. Suslov, J. Exp. Theor. Phys. 118(6), 909 (2014); I. M. Suslov, arXiv:1402.2382.

    Article  ADS  Google Scholar 

  12. P. Markos, Acta Phys. Slovaca 56, 561 (2006); P. Markos, cond-mat/0609580.

    Article  ADS  Google Scholar 

  13. P. Marko, J. Exp. Theor. Phys. 115(6), 1075 (2012).

    Article  ADS  Google Scholar 

  14. I. Kh. Zharekeshev and B. Kramer, Ann. Phys. (Leipzig) 7, 442 (1998).

    Article  ADS  Google Scholar 

  15. A. M. Garcia-Garcia and E. Cuevas, Phys. Rev. B: Condens. Matter 75, 174203 (2007).

    Article  ADS  Google Scholar 

  16. F. Wegner, Z. Phys. B: Condens. Matter 35, 207 (1979); L. Schäfer and F. Wegner, Z. Phys. B: Condens. Matter 38, 113 (1980). S. Hikami, Phys. Rev. B: Condens. Matter 24, 2671 (1981). K. B. Efetov, A. I. Larkin, and D. E. Khmelnitskii, Sov. Phys. JETP 52 (3), 568 (1980); K. B. Efetov, Adv. Phys. 32, 53 (1983).

    Article  ADS  Google Scholar 

  17. D. Vollhardt and P. Wölfle, Phys. Rev. B: Condens. Matter 22, 4666 (1980); D. Vollhardt and P. Wölfle, Phys. Rev. Lett. 48, 699 (1982); D. Vollhardt and P. Wölfle, in Modern Problems in Condensed Matter Sciences, Ed. by V. M. Agranovich and A. A. Maradudin (North-Holland, Amsterdam, The Netherlands, 1992), Vol. 32.

    Article  ADS  Google Scholar 

  18. H. Kunz and R. Souillard, J. Phys., Lett. 44, L506 (1983).

    Google Scholar 

  19. I. M. Suslov, J. Exp. Theor. Phys 81(5), 925 (1995).

    ADS  Google Scholar 

  20. I. M. Suslov, J. Exp. Theor. Phys 115(5), 897 (2012).

    Article  ADS  Google Scholar 

  21. I. M. Suslov, J. Exp. Theor. Phys 115(6), 1079 (2012).

    Article  ADS  Google Scholar 

  22. K. B. Efetov, Sov. Phys. JETP 61(3), 606 (1985).

    MathSciNet  Google Scholar 

  23. K. B. Efetov, Sov. Phys. JETP 66(3), 634 (1987); K. B. Efetov, Sov. Phys. JETP 67 (1), 199 (1988).

    MathSciNet  Google Scholar 

  24. M. R. Zirnbauer, Phys. Rev. B: Condens. Matter 34, 6394 (1986); M. R. Zirnbauer, Nucl. Phys. B 265, 375 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  25. A. D. Mirlin and Y. V. Fyodorov, Phys. Rev. Lett. 72, 526 (1994).

    Article  ADS  Google Scholar 

  26. F. Evers and A. D. Mirlin, Rev. Mod. Phys. 80, 1355 (2008).

    Article  ADS  Google Scholar 

  27. A. M. Garcia-Garcia, Phys. Rev. Lett. 100, 076404 (2008).

    Article  ADS  Google Scholar 

  28. K. B. Efetov, Sov. Phys. JETP 56(2), 467 (1982).

    MathSciNet  Google Scholar 

  29. M. Moshe and J. Zinn-Justin, Phys. Rep. 385, 69 (2003).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. B. Shapiro, Phys. Rev. Lett. 50, 747 (1983).

    Article  ADS  Google Scholar 

  31. H. Kunz and R. Souillard, J. Phys., Lett. 44, L411 (1983).

    Article  Google Scholar 

  32. J. T. Chalker, Physica A (Amsterdam) 167, 253 (1990); T. Brandes, B. Huckestein, and L. Schweitzer, Ann. Phys. (Leipzig) 5, 633 (1996).

    Article  ADS  Google Scholar 

  33. I. M. Suslov, cond-mat/0612654.

  34. J. L. Pichard and G. Sarma, J. Phys. C: Solid State Phys. 14, L127 (1981).

    Article  ADS  Google Scholar 

  35. A. MacKinnon and B. Kramer, Phys. Rev. Lett. 47, 1546 (1981).

    Article  ADS  Google Scholar 

  36. M. Aizenman and S. Warzel, Math. Phys. Anal. Geom. 9, 291 (2006).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Suslov.

Additional information

Published in Russian in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 146, No. 6, pp. 1272–1281.

Contribution for the JETP special issue in honor of A.F. Andreev’s 75th birthday

The article was translated by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suslov, I.M. Interpretation of high-dimensional numerical results for the Anderson transition. J. Exp. Theor. Phys. 119, 1115–1122 (2014). https://doi.org/10.1134/S1063776114120188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114120188

Keywords

Navigation