Skip to main content
Log in

The refining of lead by the Betts process

  • Reviews of Applied Electrochemistry 25
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Current extractive metallurgy techniques for lead refining by the Betts Electrorefining Process (BEP) are reviewed. In the BEP, refined lead (>99.99%) can be produced by the electrorefining of impure lead anodes. The process relies on the selective dissolution of lead which leaves behind a strong and adherent layer of solids (slimes) containing the noble impurities originally present in the anode. The properties of this layer are closely linked to the physical metallurgy of the lead anode. Careful control of microstructure and level of impurities in the lead anode is required, and an essential attribute of the process is the use of the H2SiF6−PbSiF6 electrolyte. This paper focuses mainly on the relationship between the anodic process and its effects. The effect of impurities and electrolysis parameters on the cathodic process are also reviewed. Descriptions of industrial operations of the BEP throughout the world are tabulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. T. Hodge,Sci. Am. 252 (6) (1985) 114.

    PubMed  Google Scholar 

  2. N. H. Gale and Z. Stos-Gale,244 (6) (1981) 176.

    Google Scholar 

  3. D. H. Ward, The AusIMM G. K. Williams Memorial Symposium, Scientific and technological developments in extractive metallurgy [Proc. Conf.], Symposia Series No. 43, Australia (1985) p. 25.

  4. S. J. Pedley, R. Widmark, A. O. Adami, H. Maczek, G. Althabegoity, J. D. Bendit and S. A. Hiscock,Tr. Inst. Min. Met. A 92 (1983) 135A.

    Google Scholar 

  5. C. A. Sutherland,CIM Bull. 81 (1988) 85.

    Google Scholar 

  6. T. R. A. Davey, ‘Lead-Tin-Zinc '80’ [Proc. Conf] (edited by J. M. Cigan, T. S. Mackey and T. J. O'Keefe), AIME, Symposium (1980) p. 477.

  7. Anonymous, United Nations, ‘Industrial Development Organization Vienna: Technological Developments in Lead and Zinc Products and their significance to Development Countries’ (1969) chapter 7.

  8. R. Kleinert,Erzmetall. 22 (1969) 327. (Translation National Translations Center, NTC 11F-81-22057.)

    Google Scholar 

  9. T. Nakamura, F. Noguchi, Y. Ueda and H. Ito, The AusIMM Adelaide Branch, Research and Development in Extractive Metallurgy [Proc. Conf.], Australia (1987) p. 85.

  10. G. C. Quigley and J. V. Happ,ibid. The AusIMM Adelaide Branch, Research and Development in Extractive Metallurgy [Proc. Conf.], Australia (1987), p. 187.

  11. J. N. Greenwood,Metall. Rev. 6, (1961) 279.

    Google Scholar 

  12. L. Gmelins, ‘Handbuch der Anorganischen Chemie’, Verlag Chemie-GMBH, Weinheim-Bergstrasse, Germany, System No. 47 Pb [B2] (1972) 364–369.

    Google Scholar 

  13. I. Molnar, Z. Horvarth and I. Meszaros,Magy. Alum. 21 (1984) 413 and22 (1985) 189.

    Google Scholar 

  14. M. Wada and T. Kobayashi,Nippon Kogyo Kaishi 90 (1035) (1974) 370.

    Google Scholar 

  15. S. Tasai and T. Tanaka,Bull. Fac. Eng. Hokkaido Univ. 122 (1984) 1.

    Google Scholar 

  16. M. Fujimori, H. Imazawa, T. Osawa and K. Baba, Mineral Processing and Extractive Metallurgy [Proc. Conf.] (edited by M. P. Jones and P. Gill) The Institution of Mining and Metallurgy, London (1984) p. 421.

    Google Scholar 

  17. L. Chuanyan and Z. Peihua, (edited by M. P. Jones and P. Gill), The Institution of Mining and Metallurgy, London (1984) p. 699.

    Google Scholar 

  18. T. Tanaka,Bull. Fac. Eng. Hokkaido Univ. 48 (1968) 25.

    Google Scholar 

  19. Y. Hoh, B. Lee, T. Ma, W. Chuang and W. Wang, European Patent Application, Applic. No. 81 301 045.1, filed 12 March 1981, Int. Cl. C22 B 3/00, C22 B B/04.

  20. R. Guerreiro, E. Sentimenti and I. Vittadini, UK Patent Application GB 2 118 536A, filed 23 March 1983.

  21. T. Tanaka and T. Midorikawa,J. Less-Common Met. 15 (1968) 201.

    Google Scholar 

  22. S. Dianbang, Mineral Processing and Extractive Metallurgy [Proc. Conf.] (edited by M. P. Jones and P. Gill), The Institution of Mining and Metallurgy, London (1984) p. 599.

    Google Scholar 

  23. D. S. Flett,Trans. Instn. Min. Metall. C 94C (1985) 232.

    Google Scholar 

  24. M. M. Wong, F. P. Haver and R. G. Sandberg, ‘Lead-Tin-Zinc '80’ (edited by J. M. Cigan, T. S. Mackey and T. J. O'Keefe), AIME Symposium (1980) p. 445.

  25. J. M. Demarthe and A. Gorgeaux,ibid ‘Lead-Tin-Zinc '80’ (edited by J. M. Cigan, T. S. Mackey and T. J. O'Keefe), AIME Symposium (1980) p. 426.

  26. A. Y. Lee, A. Wethington and E. Cole Jr., US Bureau of Mines, RI 9055 (1986).

  27. A. G. Betts, ‘Lead Refining by Electrolysis’, Wiley & Sons, New York (1908).

    Google Scholar 

  28. Idem A. G. Betts, US Patent 713 277, 9 January 1902.

  29. Idem A. G. Betts, US Patent 713 278, 9 October 1902.

  30. Idem A. G. Betts, US Patent 918 647, 23 January 1907.

  31. Idem A. G. Betts, US Patent 891 395, 8 December 1906.

  32. Idem A. G. Betts, US Patent 126 576, 9 October 1902.

  33. D. L. Thomas, C. J. Krauss and R. C. Kerby, TMS paper selection A81-8, TMS-AIME, Warrendale, PA (1981).

    Google Scholar 

  34. P. F. McIntyre,Trans. Amer. Inst. Min. Metall. Engrs. 121 (1936) 271–82.

    Google Scholar 

  35. Anonymous,Cominco Magazine 23 (1962) 17–21.

    Google Scholar 

  36. J. B. Hutl,Eng. Min. J. 139 (1938) 34.

    Google Scholar 

  37. L. Zhenya, Non-Ferrous Metals (China)37 (1985) 53.

    Google Scholar 

  38. W. Mao-Chuan,Metall (Berlin) 35 (1981) 425.

    Google Scholar 

  39. N. K. Thiet, Ph.D. Dissertation, Bergakademie Freiberg, East Germany (1982).

  40. E. R. Freni,J. Met. 17 (1965) 1206.

    Google Scholar 

  41. G. Tremolada and L. Abduini, Symposium on Sulphamic Acid and its Electrometallurgical Applications, Milan (1967) p. 353.

  42. E. P. Freni,Erzmetall. 22 (1969) 312; also in supplementary volume (1969) p. 128.

    Google Scholar 

  43. E. Nomura, A. Aramaki and Y. Nishimura, TMS paper selection A74-21, TMS-AIME, Warrendale, PA (1974).

    Google Scholar 

  44. S. Hirakawa, E. Nomura, T. Mori and Y. Hirayama, TMS paper selection A78-14, TMS-AIME, Warrendale, PA (1978).

    Google Scholar 

  45. E. Nomura, Y. Nakamura, K. Takahashi, N. Ueda, TMS paper selection A81-7, TMS-AIME, Warrendale, PA (1981).

    Google Scholar 

  46. A. Ohta, A. Ichinose and T. Kohno, TMS paper selection A81-21, TMS-AIME, Warrendale, PA (1981).

    Google Scholar 

  47. K. Tadao and K. Yoshiaki, TMS paper selection A81-9, TMS-AIME, Warrendale, PA (1981).

    Google Scholar 

  48. M. Wada, K. Hashimoto, K. Ono-ike,Nippon Kogyo Kaishi 97 (1981) 400.

    Google Scholar 

  49. Y. Sugawara and S. Ishii,Metall. Rev. MMIJ 2 (1985) 90.

    Google Scholar 

  50. N. Hamabe, S. Kawakita and E. Oshima2 (1985) 102.

    Google Scholar 

  51. J. Minoura and Y. Maeda,1 (1984) 138.

    Google Scholar 

  52. T. E. Harper,Trans. Amer. Inst. Min. Metall. Engrs.,121 (1936) 283–88.

    Google Scholar 

  53. T. E. Harper and G. Reinberg,Eng. Min. J. 136, (1935) 119.

    Google Scholar 

  54. C. A. Aranda and P. J. Taylor, AIME World Symposium of Mining and Metallurgy of Lead and Zinc (edited by C. H. Cotterill and J. M. Cigan) (1970) p. 891.

  55. J. S. Jacobi, Refining Process in Metallurgy [Proc. Conf.], Verlag Chemie, Weinheim (1983) p. 12–20.

    Google Scholar 

  56. Anonymous,Chem. Proc. (London) 15 (1969) 18.

    Google Scholar 

  57. E. Lach and M. Kwarcinski,Rudy i Met. Niezelaz 29 (1984) 258.

    Google Scholar 

  58. M. BarakChem. and Ind. (London) (1976) 871.

  59. J. Encev,Metalurgija (Sofia) 4 (1973) 25.

    Google Scholar 

  60. C. L. Mantell, ‘Industrial Electrochemistry’, McGraw-Hill, New York (1950) p. 314–22.

    Google Scholar 

  61. K. Emicke, G. Holzapfel and E. Kuiprath, AIME World Symposium of Mining and Metallurgy of Lead and Zinc (edited by C. H. Cotterill and J. M. Cigan) (1970) p. 867.

  62. K. Emicke, G. Holzapfel and E. Kuiprath,Erzmetall. 24 (1971) 205. (Translation National Translations Center, NTC 11F-81-11544).

    Google Scholar 

  63. Private Communication, Drs Kartenbeck and Traulsen, Norddeutsche Affinerie (19 January 1988).

  64. A. S. Kafka,Eng. Min. J. 190 (1989) 27.

    Google Scholar 

  65. C. J. Chen and C. C. Wan,J. of Fluorine Chem. 27 (1985) 167.

    Google Scholar 

  66. F. Beck,Werkst. Korros. 28 (1977) 688.

    Google Scholar 

  67. H. Silman, Galvanotechnisches Kolloquium. 6th (1980) p. 79.

  68. U. Dacati, P. Cavalloti and D. Colombo, Electrochemical Process and Plant Design [Proc. Conf.] (edited by R. C. Alkire, T. R. Beck and R. D. Varjian) The Electrochemical Society (1983) p. 110.

  69. U. Ginatta, TMS paper selection A85-29, TMS-AIME Warrendale, PA (1985).

    Google Scholar 

  70. M. Maja, N. Penazzi, P. Spinelli, M. V. Ginatta, U. Ginatta and G. Orsello, IChem Symposium Series NO. 98 (1986) p. 173.

    Google Scholar 

  71. M. Ginatta, UK Patent Application GB 2 121 826A, filed 13 May 1983, published 4 January 1984.

  72. M. Ginatta, UK Patent Application GB 2 121 437A, 21 December 1983.

  73. E. R. Freni, in Symposium on Sulphamic Acid and its Electrometallurgical Applications, Milan (1967) p. 367.

  74. P. M. Strocchi, R. Peruzzi, A. Rozzoli, D. Simigaglia and B. Vicentini,Electrochim. Met. 2 (1967) 95.

    Google Scholar 

  75. A. La Vecchia, P. Pedeferri, R. Peruzzi, A. Porta and D. Sinigaglia,1 (1966) 255.

    Google Scholar 

  76. P. Pedeferri and A. La Vecchia,1 (1966) 112.

    Google Scholar 

  77. P. M. Strocchi, R. Peruzzi, A. Rozzoli, D. Sinigaglia and B. Vicentini,2 (1967) 95.

    Google Scholar 

  78. T. Konada, Y. Tenmaya and K. Yamaguchi, CIM Symp. on Quality Control in Non-Ferrous Pyrometallurgical Processes [Proc. Conf.], Vancouver B.C. (1985) pp. 2–13.

  79. E. Nomura, M. Aramaki and Y. Nishimura, US Patent 3 960 681, 1 June 1976.

  80. L. Gmelins ‘Handbuch der Anorganischen Chemie’, Verlag Chemie-GMBH, Weinheim-Bergstrasse, Germany, System No. 15 Si [B] (1959) 614–653.

    Google Scholar 

  81. C. J. Krauss,J. Met. 28 (1976) 4.

    Google Scholar 

  82. Private Communication, H. Shouyi, Shenyang Smelter, 21 January 1988.

  83. Private Communication, C. J. Krauss, Cominco Ltd., 15 February 1988.

  84. Private Communication, Dr. Wegerdt, ‘Albert Funk’ Metallurgical Complex, 2 March 1988.

  85. Private Communication, N. Córdova, S., Empresa Minera del Centro de Perú, 28 January 1988.

  86. Private Communication, H. Kubo, Kamioka Mining Co. Ltd., 10 January 1988.

  87. C. J. Krauss, Canadian Patent 1 020 491, 8 November 1977.

  88. I. D. Entchev, N. T. Kuntchev, G. A. Haralampiev, A. D. Milkov, B. Y. Sotirov and D. A. Petrov, Canadian Patent 928 246, 12 June 1973.

  89. Bulletin of Alloy Phase Diagrams,1 (1980) 56.

  90. Ibid. Bulletin of Alloy Phase Diagrams1 (1980) 62.

  91. Ibid. Bulletin of Alloy Phase Diagrams2 (1981) 81.

  92. Ibid. Bulletin of Alloy Phase Diagrams2 (1981) 86.

  93. M. Hansen, ‘Constitution of Binary Alloys’, 2nd ed., McGraw-Hill, New York (1958) pp. 41, 173, 325 and 1101.

    Google Scholar 

  94. T. Tanaka,Metall. Trans. B 8B (1977) 651.

    Google Scholar 

  95. R. Elliot, ‘Eutectic Solidification Processing’, Butterworths, London (1983).

    Google Scholar 

  96. Y. Nishimura, Canadian Patent 1 019 132, 18 October 1977.

  97. F. Wenzel and K. Hein,Neue Hütte 19 (1974) 263. (Translation National Translations Center, NTC 11F-81-11594.)

    Google Scholar 

  98. H. J. Lange, K. Hein and N. K. Thiet,28 (1983) 136.

    Google Scholar 

  99. H. J. Lange, K. Hein and D. Schab,Freiberg. Forschungsh. B. B195 (1977) 29. (Translation NRC 2873873.)

    Google Scholar 

  100. K. Hein,Chem. Technol. (Leipzig) 36 (1984) 378.

    Google Scholar 

  101. H. Bombach, K. Hein, J. Korb and H. J. Lange,Neue Hütte 31 (1986) 347. (Translation MINTEK TR-1265.)

    Google Scholar 

  102. B. G. Ateya and H. W. Pickering,J. Appl. Electrochem. 11 (1981) 453.

    Google Scholar 

  103. J. M. Hornut, G. Valentin and A. Storck,J. Appl. Electrochem. 15 (1985) 237.

    Google Scholar 

  104. O. Wein,Collect. Czech. Chem. Commun. 53 (1988) 697.

    Google Scholar 

  105. M. Jaskula,Erzmetall. 42 (1989) 117.

    Google Scholar 

  106. M. Maeda,J. Electrochem. Soc. Jpn (Overseas Suppl. Ed.)26 (1958) E21.

    Google Scholar 

  107. L. Kiss, ‘Kinetics of Electrochemical Metal Dissolution’, Studies in Physical and Theoretical Chemistry 47, Elsevier, Hungary (1988).

    Google Scholar 

  108. G. A. Kuznetsova,Tsvetn. Metall. 8 (1967) 69.

    Google Scholar 

  109. L. I. Reznichenko and A. D. Pogorelyi,Sov. Non-Ferrous Met. Res. (Engl. Transl.)4 (1976) 226.

    Google Scholar 

  110. L. I. Reznichenko,5 (1977) 245.

    Google Scholar 

  111. W. Eisert,Neue Hütte 4 (1959) 29.

    Google Scholar 

  112. I. Pajak, M. Kwarcinski, A. Bojanowska and B. Kwarcinska,Pr. Inst. Met. Nieze 5 (1976) 121.

    Google Scholar 

  113. P. Mechenov,Minno Delo Met. [Sofia] 17 (1962) 30. Chemical Abstracts: 57 (1962) 14776.

    Google Scholar 

  114. F. Wenzel,Neue Hütte 18, (1973) 374.

    Google Scholar 

  115. F. Wenzel, Ph.D. Dissertation, Bergakademie Freiberg, East Germany (1971).

  116. M. Isawa and T. Tanaka,Nippon Kogyo Kaishi 77 (1961) 483.

    Google Scholar 

  117. 78 (1962) 519.

    Google Scholar 

  118. F. Miyashita and G. Miyatani,Technol. Rep. Kansai Univ. 13 (1972) 81.

    Google Scholar 

  119. 14 (1973) 61.

    Google Scholar 

  120. 18 (1977) 87.

    Google Scholar 

  121. , Nippon Kogyo Kaishi,90 (1974) 617.

    Google Scholar 

  122. 92 (1976) 431.

    Google Scholar 

  123. 94 (1978) 485.

    Google Scholar 

  124. S. Hirakawa and R. Oniwa, Canadian Patent 1 023 691, 3 January 1978.

  125. G. Baralis, Lead 65 [Proc. Conf.], Arnhem (1967) p. 317.

  126. G. Baralis and M. Marone,Metall. Ital. 7 (1967) 494.

    Google Scholar 

  127. R. C. Kerby and H. E. Jackson,Can. Metal. Quart. 17 (1978) 125.

    Google Scholar 

  128. R. C. Kerby, Canadian Patent 1 115 658, 5 January 1982.

  129. C. J. Krauss and G. Shaw, Canadian Patent 988 897, 11 May 1976.

  130. T. N. Andersen, R. C. Kerby and T. J. O'Keefe,J. Met. 37 (1985) 36.

    Google Scholar 

  131. R. C. Kerby and C. J. Krauss, Lead-Tin-Zinc '80 [Proc. Conf.] (edited by J. M. Cigan, T. S. Mackey and T. J. O'Keefe), AIME Symposium (1980) p. 187.

  132. J. Ambrose and B. Conard, CANMET Contract serial No. ISQ 85-00148, 15 September 1986.

  133. ‘Applications of Polarization Measurements in the Control of Metal Deposition’ (edited by I. H. Warren), Elsevier, Amsterdam (1984).

    Google Scholar 

  134. C. T. Wang, Ph.D. Dissertation, The University of Missouri, Rolla (1983).

  135. D. M. Hembree Jr.,Plat. Surf. Finish 73 (1986) 54.

    Google Scholar 

  136. S. Tokunobu, Canadian Patent 1 001 379, 18 February 1974.

  137. H. J. Lange and D. Kappler,Freiberg. Forschungsh. B. B210 (1979) 171.

    Google Scholar 

  138. R. C. Kerby and C. J. Krauss, US Patent 4 416 746, 22 November 1983.

  139. R. C. Kerby, Canadian Patent 1 174 198, 11 September 1984.

  140. Idem R. C. Kerby, Canadian Patent 1 126 684, 29 June 1982.

  141. R. C. Kerby and R. D. H. Willans, TMS paper selection A84-15, TMS-AIME, Warrendale, PA (1984).

  142. M. Kwarcinski, A. Bednarek, T. Nalawajek and A. Kurzeja,Rudy i Met. Niezelaz. 29 (1984) 295.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

González-Domínguez, J.A., Peters, E. & Dreisinger, D.B. The refining of lead by the Betts process. J Appl Electrochem 21, 189–202 (1991). https://doi.org/10.1007/BF01052570

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01052570

Keywords

Navigation