Skip to main content
Log in

Self-avoiding walks in quenched random environments

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The self-avoiding walk in a quenched random environment is studied using real-space and field-theoretic renormalization and “Flory” arguments. These methods indicate that the system is described, ford<d c =4, and, for large disorder ford>d c , by a strong disorder fixed point corresponding to a “glass” state in which the polymer is confined to the lowest energy path. This fixed point is characterized by scaling laws for the size of the walk,LN withN the number of steps, and the fluctuations in the free energy,Αf∼L . The bound 1/ζ-ω⩽d/2 is obtained. Exact results on hierarchical lattices yieldζ>ζ pure and suggests that this inequality holds ford=2 and 3, althoughζ=ζ pure cannot be excluded, particularly ford=2. Ford>d c there is a transition between strong and weak disorder phases at whichζ=ζ pure. The strong-disorder fixed point for SAWs on percolation clusters is discussed. The analogy with directed walks is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Kremer,Z. Phys. B 45:149 (1981); B. Derrida,Phys. Rep. 103:29 (1984); M. Muthukumar and A. Baumgartner,Macromolecules 22:1937, 1941; M. Muthukumar,J. Chem. Phys. 90:4594 (1989); J. D. Honeycutt and D. Thirumalai,J. Chem. Phys. 90:4542 (1989); S. M. Bhattacharjee and B. K. Chakrabarti, preprint, Bhubaneswar (1989).

    Google Scholar 

  2. A. B. Harris,Z. Phys. B 49:347 (1983).

    Google Scholar 

  3. S. B. Lee and H. Nakanishi,Phys. Rev. Lett. 61:2022 (1966).

    Google Scholar 

  4. Y. Meir and A. B. Harris,Phys. Rev. Lett. 63:2819 (1989).

    Google Scholar 

  5. J. Machta and T. R. Kirkpatrick,Phys. Rev. A 41:5345 (1990).

    Google Scholar 

  6. J. D. Honeycutt and D. Thirumalai,J. Chem. Phys. 93:6851 (1990).

    Google Scholar 

  7. S. P. Obukhov,Phys. Rev. A 42:2015 (1990).

    Google Scholar 

  8. Y. Kim,Phys. Rev. A 41:4554 (1990).

    Google Scholar 

  9. A. K. Roy and A. Blumen,J. Stat. Phys. 59:1581 (1990).

    Google Scholar 

  10. C. Vanderzande and A. Komoda,Europhys. Lett. 14:677 (1991).

    Google Scholar 

  11. J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,Phys. Rev. Lett. 57:2999 (1986).

    Google Scholar 

  12. M. Kardar, G. Parisi, and Y. C. Zhang,Phys. Rev. Lett. 56:889 (1989).

    Google Scholar 

  13. M. Kardar and Y. C. Zhang,Phys. Rev. Lett. 58:2087 (1987).

    Google Scholar 

  14. D. S. Fisher and D. A. Huse, preprint (1990); C. A. Doty and J. M. Kosterlitz, preprint (1990).

  15. D. Nelson and P. Le Doussal,Phys. Rev. B 42:10113 (1990).

    Google Scholar 

  16. P. G. de Gennes,Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, New York, 1979).

    Google Scholar 

  17. D. Thirumalai,Phys. Rev. A 37:269 (1987).

    Google Scholar 

  18. J. Machta and R. A. Guyer,J. Phys. A 22:2539 (1989).

    Google Scholar 

  19. J. Machta,Phys. Rev. A 40:1720 (1989).

    Google Scholar 

  20. J. D. Honeycutt, D. Thirumalai, and D. K. Klimov,J. Phys. A 22:L169 (1989).

    Google Scholar 

  21. F. Family,J. Phys. A 13:L325 (1980);J. Phys. (Paris)42:189 (1981).

    Google Scholar 

  22. S. Redner and P. J. Reynolds,J. Phys. A 14:2679 (1981).

    Google Scholar 

  23. B. Derrida and R. B. Griffiths,Europhys. Lett. 8:116 (1989).

    Google Scholar 

  24. J. Cook and B. Derrida,J. Stat. Phys. 57:89 (1989).

    Google Scholar 

  25. A. P. Young and R. B. Stinchcombe,J. Phys. C 9:4419 (1976).

    Google Scholar 

  26. D. Andelman and A. N. Berker,Phys. Rev. B 29:2630 (1984).

    Google Scholar 

  27. W. Kinzel and E. Domany,Phys. Rev. B 23:3421 (1981); B. Derrida, H. Dickinson, and J. Yeomans,J. Phys. A 18:L53 (1985).

    Google Scholar 

  28. A. Aharony and A. B. Harris,J. Stat. Phys. 54:1091 (1989).

    Google Scholar 

  29. J. P. Bouchaud and A. Georges,Phys. Rev. B 39:2846 (1989).

    Google Scholar 

  30. P. Sen and P. Ray,J. Stat. Phys. 59:1581 (1990).

    Google Scholar 

  31. A. B. Harris and T. C. Lubensky,Phys. Rev. B 35:6964 (1987).

    Google Scholar 

  32. T. C. Lubensky, inIll-Condensed Matter, R. Balian, R. Maynard, and G. Toulouse, eds. (North-Holland, Amsterdam, 1978).

    Google Scholar 

  33. D. A. Huse and C. L. Henley,Phys. Rev. Lett. 54:2708 (1985); D. A. Huse, C. L. Henley, and D. S. Fisher,Phys. Rev. Lett. 55:2924 (1985).

    Google Scholar 

  34. D. R. Nelson and R. A. Pelcovitz,Phys. Rev. B 16:2191 (1977).

    Google Scholar 

  35. M. E. Cates and R. C. Ball,J. Phys. (Paris) 49, 2009 (1988); T. Natterman and W. Renz,Phys. Rev. A 40:{4675} (1989).

    Google Scholar 

  36. G. Parisi,J. Phys. (Paris)51:1595 (1990).

    Google Scholar 

  37. M. Mezard,J. Phys. (Paris)51:1831 (1990).

    Google Scholar 

  38. M. E. Fisher,J. Chem. Phys. 44:616 (1966); J. des Cloiseaux,Phys. Rev. A 10:1665 (1974).

    Google Scholar 

  39. M. Kardar,J. Appl. Phys. 61:3601 (1987).

    Google Scholar 

  40. C. J. Camacho and M. E. Fisher,Phys. Rev. Lett.,65:9 (1990).

    Google Scholar 

  41. D. R. Nelson, T. Piran, and S. Weinberg, eds.,Statistical Mechanics of Membranes and Surfaces (World Scientific, Singapore, 1989).

    Google Scholar 

  42. D. S. Fisher, private communication.

  43. M. Kardar,Nucl. Phys. B 290:582 (1987).

    Google Scholar 

  44. Y. C. Zhang, preprint (1990).

  45. J. Machta, preprint (1991).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Doussal, P., Machta, J. Self-avoiding walks in quenched random environments. J Stat Phys 64, 541–578 (1991). https://doi.org/10.1007/BF01048306

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01048306

Key words

Navigation