Skip to main content
Log in

Alterations in the morphology of glycoconjugate molecules caused by histochemical procedures: Comparison of renal glomeruli and articular cartilage

  • Papers
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The fine structure of the glycoconjugate molecules was investigated in the glomerular capillary wall of the rat kidney fixed by vascular perfusion, and in the human and rat articular cartilage fixed by immersion. Kidney and cartilage were either prefixed in aldehyde alone (group a), or with the addition of Alcian Blue 8 GX (group b), or Alcian Blue and 0.3m MgCl2 (group c), or Acridine Orange at a low (0.01%) and high (0.1%) concentration (group d). The specimens were postfixed either in OsO4 phosphate or cacodylate, with the exception of some of the samples in group a, for which a solution of potassium ferrocyanide-reduced OsO4 was used (group e). All samples were conventionally dehydrated and embedded in Epon. In addition, some of the tissue samples in group c were cryoprotected, frozen in liquid Freon (−150° C) or in nitrogen slush (−210° C), both postfixed and dehydrated by cryosubstitution, and embedded in Epon (group f).

The present investigations demonstrate that some well known extracellular structures such as the laminae rarae of the glomerular basement membrane or the interfibrillar matrix of the articular cartilage can be considerably altered in their morphology by the histological procedures applied. Whereas the precipitated glycoconjugates, as seen after staining with cationic dyes or reduced OsO4 and conventional dehydration, can easily be recognized, the superposition of the extended molecules, as preserved by freezing and substitution, prevents their demonstration in native conformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akisaka, T. &Shigenaga, Y. (1983) Ultrastructure of growing epiphyseal cartilage processed by rapid freezing and freeze-substitution.J. Electron Microsc. 32, 305–20.

    Google Scholar 

  • Arsenault, A. L. (1985) Fine structure and elemental maps of the calcifying epiphysis preserved by slam freezing and freeze substitution. InThe Chemistry and Biology of Mineralized Tissue (edited byButler, W. T.) pp. 364–7. Birmingham: Ebsco Media Inc.

    Google Scholar 

  • Arsenault, A. L., Spitzer, E. &Simon, G. T. (1987) Improved preservation of cartilage extracellular matrix by fzeeze dried embedding.J. Microsc. 145, 357–60.

    PubMed  Google Scholar 

  • Arsenault, A. L., Ottensmeyer, F. P. &Heath, I. B. (1988) An electron microscopic and spectroscopic study of murine epiphyseal cartilage: analysis of fine structure and matrix vesicles preserved by slam freezing and freeze substitution.J. Ultrastruct. Mol. Struct. Res. 98, 32–47.

    PubMed  Google Scholar 

  • Behnke, O. &Zelander, T. (1970) Preservation of intercellular substances by the cationic dye Alcian blue in preparative procedures for electron microscopy.J. Ultrastruct. Res. 31 424–38.

    PubMed  Google Scholar 

  • Brandes, G. (1986) Proteoglykane in der glomerulären Basalmembran und in der hyalinen Knorpelmatrix. Elektronenmikroskopische Darstellung mit Hilfe von Akridinorange. Diss. Hannover.

  • Brandes, G. & Reale, E. (1988) Proteoglycans of the articular cartilage stainable with ferrocyanide-reduced osmium tetroxide. XI FECTS Meeting, Amsterdam, Nr. 39.

  • Brandes, G. &Reale, E. (1990) The reaction of Acridine Orange with proteoglycans in the articular cartilage of the rat.Histochem. J. 22, 106–12.

    PubMed  Google Scholar 

  • Brandes, G., &Reale, E. (1991) Ultrastruktur der Proteoglykane in der perizellulären und interzellulären Matrix des Gelenkknorpels von Ratten,Verh. Anat. Ges. 84, 63–4.

    Google Scholar 

  • Brandes, G., Reale, E. & Luciano, L. (1990) Comparison of different fixatives preceding the staining of the proteoglycans with ferrocyanide-reduced osmium tetroxide. XII FECTS Meeting, Bialystok, Nr. 76.

  • Buckwalter, J. A. (1983) Proteoglycan structure in calcifying cartilage.Clin. Orthop. Rel. Res. 172, 207–32.

    Google Scholar 

  • Buckwalter, J. A. &Rosenberg, L. C. (1982) Electron microscopic studies of cartilage proteoglycans. Direct evidence for the variable length of the chondroitin sulfate-rich region of proteoglycan subunit core protein.J. Biol. Chem. 257, 9830–9.

    PubMed  Google Scholar 

  • Caulfield, J. P. (1978) The distribution of anionic sites in the glomerular basement membrane of normal and nephrotic rats. InBiology and Chemistry of Basement Membranes (edited byKefalides, N. A.) pp. 81–98. New York & London: Academic Press.

    Google Scholar 

  • De Bruijn, W. C. &Den Breejen, P. (1976) Glycogen, its chemistry and morphological appearance in the electron microscope. III. Identification of the tissue ligands involved in the glycogen contrast staining reaction with the osmium(VI)-iron(II)complex.Histochemical J. 8, 121–42.

    Google Scholar 

  • Eisenstein, R., Arsenis, C. &Kuettner, K. E. (1970) Electron microscopic studies of cartilage matrix using lysozyme as a vital stain.J. Cell Biol. 46, 626–31.

    PubMed  Google Scholar 

  • Farquhar, M. G. (1981) The glomerular basement membrane: a selective macromolecular filter. InCell Biology of Extracellular Matrix (edited byHay, E. D.) pp. 335–78. New York, London: Plenum Press.

    Google Scholar 

  • Gersh, I. (1973a) Morphochemical study of the matrix of epiphyseal plate and joint cartilage and the origin of protein-polysaccharide complex. InSubmicroscopic Cytochemistry (edited byGersh, I.) Vol II pp. 149–76. New York, London: Academic Press.

    Google Scholar 

  • Gersh, I. (1973b) Vascularity and protein-polysaccharide complex in tendons of young rats. InSubmicroscopic Cytochemistry (edited byGersh, I.). Vol. II pp. 206–12. New York, London: Academic Press.

    Google Scholar 

  • Geyer, G., Linss, W., Müller, A., Meyer, C. &Schaaf, P. (1969) Elektronenmikroskopische Untersuchungen über die Hydratation der Glykokalyx.Z. Mikr. Anat. Forsch. 81, 182–4.

    PubMed  Google Scholar 

  • Ghadially, F. N. (1983)Fine Structures of Synovial Joints. A Text and Atlas of the Ultrastructure of Normal and Pathological Articular Tissues. London: Butterworths.

    Google Scholar 

  • Goldberg, M. &Escaig-Haye, F. (1986) Is the lamina lucida of the basement membrane a fixation artefact?Eur. J. Cell Biol. 42, 365–8.

    PubMed  Google Scholar 

  • Griffith, L. D., Bulger, R. E. &Trump, B. F. (1967) The ultractructure of the functioning kidney.Lab. Invest. 16, 220–46.

    PubMed  Google Scholar 

  • Hall, B. V. (1953) Studies of normal glomerular structures by electron microscopy. Proc. Fifth Ann. Conference on the Nephrotic Syndrome sponsored by the National Nephrosis Foundation Inc., New York, pp. 1–39.

  • Hascall, G. K. (1980) Cartilage proteoglycans: comparison of sectioned and spread whole molecules.J. Ultrastruct. Res. 70, 369–75.

    PubMed  Google Scholar 

  • Hay, E. D. (1981) Extracellular matrix.J. Cell Biol. 91, 205s-23s.

    PubMed  Google Scholar 

  • Hunziker, E. B. &Schenk, R. K. (1984) Cartilage ultrastructure after high pressure freezing, freeze substitution, and low temperature embedding. II. Intercellular matrix ultrastructure — preservation of proteoglycans in their native state.J. Cell Biol. 98, 277–82.

    PubMed  Google Scholar 

  • Inoue, S. (1989) Ultrastructure of basement membranes.Int. Rev. Cytol. 117, 57–98.

    PubMed  Google Scholar 

  • Inoue, S. &Leblond, C. P. (1988) Three-dimensional network of cords: the main component of basement membranes.Am. J. Anat. 181, 341–58.

    PubMed  Google Scholar 

  • Kanwar, Y. S. &Farquhar, M. G. (1979) Anionic sites in the glomerular basement membrane.In vivo andin vitro localization to the laminae rarae by cationic problesJ. Cell Biol. 81, 137–53.

    PubMed  Google Scholar 

  • Karnovsky, M. J. (1971) Use of ferrocyanide-reduced osmium tetroxide in electron microscopy. American Society of Cell Biology, 11th Meeting. p. 146.

  • Khan, T. A. &Overton, J. (1970) Lanthanum staining of developing chick cartilage and reaggregating cartilage cells.J. Cell Biol. 44, 433–8.

    PubMed  Google Scholar 

  • Kriz, W. &Kaissling, B. (1985) Structural organization of the mammalian kidney. InThe Kidney: Physiology and Pathophysiology (edited bySeldin, D. W. &Giebisch, G.) Vol. 1 pp. 265–306. New York: Raven Press.

    Google Scholar 

  • Latta, H. (1980) Filtration barriers in the glomerular capillary wall. InFunctional Ultrastructure of the Kidney (edited byMaunsbach, A. B., Olsen, T. S. &Christensen, E. I.) pp. 3–29. London: Academic Press.

    Google Scholar 

  • Latta, H. &Johnston, W. H. (1976) The glycoprotein inner layer of glomerular capillary basement membrane as a filtration barrier.J. Ultrastruct. Res. 57, 65–7.

    PubMed  Google Scholar 

  • Latta, H., Johnston, W. H. &Stanley, T. M. (1975) Sialoglycoproteins and filtration barriers in the glomerular capillary wall.J. Ultrastruct. Res. 51, 354–76.

    PubMed  Google Scholar 

  • Leblond, C. P. &Inoue, S. (1989) Structure, composition, and assembly of basement membrane.Am. J. Anat. 185, 367–90.

    PubMed  Google Scholar 

  • Le Roy, E. C. (1985) Chondrocyte structure and function. InArthritis and Allied Conditions. A Textbook of Rheumatology (edited byMcCarty, D. J.) 10th edn. pp. 270–7. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Luft, J. H. (1965) The fine structure of hyaline cartilage matrix following ruthernium red fixation and staining.J. Cell Biol. 27, 61A.

    Google Scholar 

  • Luft, J. H. (1971) Ruthenium red and violet. II. Fine stuuctural localization in animal tissues.Anat. Rec. 171, 369–416.

    PubMed  Google Scholar 

  • Malhotra, S. K. &Van Harreveld, A. (1965) Dorsal roots of the rabbit investigated by freeze-substitution.Anat. Rec. 152, 283–92.

    PubMed  Google Scholar 

  • Matukas, V. J., Panner, B. J. &Orbison, J. L. (1967) Studies on ultrastructural identification and distribution of protein-polysaccharide in cartilage matrix.J. Cell Biol. 32, 365–77.

    PubMed  Google Scholar 

  • Pease, D. C. (1955) Fine structures of the kidney seen by electron microscopy.J. Histochem. Cytochem. 3, 295–308.

    PubMed  Google Scholar 

  • Rapatz, G. &Luyet B. (1961) Electron microscope study of erythrocytes in rapidly frozen frog's blood.Biodynamica 8, 295–314.

    PubMed  Google Scholar 

  • Reale, E. (1986) The ground substance of the human articular cartilage after postfixation in ferrocyanide-reduced osmium tetroxide.J. Clin. Chem. Biochem. 24, 918–20.

    Google Scholar 

  • Reale, E. &Luciano, L. (1990) The laminae rarae of the glomerular basement membrane. Their manifestation depends on the histochemical and histological techniques. InHereditary Nephritis (edited bySessa, A., Meroni, M. &Battini, G.)Contrib. Nephrol. Vol 80. pp. 32–40 Basel: Karger.

    Google Scholar 

  • Reale, E., Luciano, L., Kühn, K.-W. &Stolte, H. (1979) Morphological and functional aspects of the glomerular basement membrane.Basic Appl. Histochem. (suppl.)23, 5–11.

    PubMed  Google Scholar 

  • Reale, E., Luciano, L. &Kühn, K.-W. (1983) Ultrastructural architecture of proteoglycans in the glomerular basement membrane: a cytochemical approach.J. Histochem. Cytochem. 31, 662–8.

    PubMed  Google Scholar 

  • Reale, E., Luciano, L. &Kühn, K. (1989) The fine structure of the laminae rarae of the glomerular basement membrane in the rat. InCells and Tissues: a Three-Dimensional Approach by Modern Techniques in Microscopy (edited byMotta, P. M.) pp. 167–72. New York: Alan R. Liss.

    Google Scholar 

  • Ruggeri, A., Dell'orbo, C. &Quacci, D. (1975) Electron microscopic visualization of proteoglycans with Alcian Blue.Histochem. J. 9, 187–97.

    Google Scholar 

  • Ruggeri, A., Dell'orbo, C. &Quacci, D. (1977) Electron microscopic visualization of proteoglycans with Ruthenium Red.Histochem. J. 9, 249–52.

    PubMed  Google Scholar 

  • Schofield, B. H., Williams, B. R. &Doty, S. B. (1975) Alcian Blue staining of cartilage for electron microscopy. Application of the critical electrolyte concentration principle.Histochem. J. 7, 139–49.

    PubMed  Google Scholar 

  • Schurer, J. W., Kalicharan, D., Hoedemaeker, Ph. J. &Molenaar, I. (1978) The use of polyethyleneimine for demonstration of anionic sites in basement membranes and collagen fibrils.J. Histochem. Cytochem. 26, 688–9.

    PubMed  Google Scholar 

  • Scott, J. E. (1980) Collagen-proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy.Biochem. J. 187, 887–91.

    PubMed  Google Scholar 

  • Scott, J. E. (1985) Proteoglycan histochemistry — a valuable tool for connective tissue biochemists.Collagen Res. Rel. 5, 541–75.

    Google Scholar 

  • Scott, J. E. (1990) Proteoglycan:collagen interactions and subfibrillar structure in collagen fibrils. Implications in the development and ageing of connective tissues.J. Anat. 169, 23–35.

    PubMed  Google Scholar 

  • Scott, J. E. &Dorling, J. (1965) Differential staining of acid glycosaminoglycans (mucopolysaccharides) by Alcian blue in salt solutions.Histochemie 5, 221–33.

    PubMed  Google Scholar 

  • Serafini-Fracassini, A. &Smith, J. W. (1966) Observations on the morphology of the protein/polysaccharide complex of bovine nasal cartilage and its relationship to collagen.Proc. Royal Soc. B 165, 440–9.

    Google Scholar 

  • Shepard, N. &Mitchell, N. (1976a) The localization of proteoglycan by light and electron microscopy using safranin O. A study of epiphyseal cartilage.J. Ultrastruct. Res. 54, 451–60.

    PubMed  Google Scholar 

  • Shepard, N. &Mitchell, N. (1976b) Simultaneous localization of proteoglycan by light and electron microscopy using toluidine blue O. A study of epiphyseal cartilage.J. Histochem. Cytochem. 24, 621–9.

    PubMed  Google Scholar 

  • Stockwell, R. A. (1979)Biology of Cartilage Cells. Cambridge: Cambridge University Press.

    Google Scholar 

  • Tawara, A., Varner, H. H. &Hollyfield, J. G. (1989) Proteoglycans in the mouse interphotoreceptor matrix. II. Origin and development of the proteoglycans.Exp. Eye Res. 48, 815–39.

    PubMed  Google Scholar 

  • Timpl, R. &Dziadek, M. (1986) Structure, development, and molecular pathology of basement membranes.Int. Rev. Exp. Pathol. 29, 1–112.

    PubMed  Google Scholar 

  • Tisher, C. C. &Madsen, K. M. (1986) Anatomy of the kidney. InThe Kidney (edited byBrenner, B. M. &Rector F. C., Jr) Vol 1, 3rd edn. pp. 3–60. Philadelphia: Saunders.

    Google Scholar 

  • Van Kuppevelt, T. H. M. S. M., Domen, J. G. W., Cremers, F. P. M. &Kuyper, C. M. A. (1984a) Staining of proteoglycans in mouse lung alveoli. I. Ultrastructural localization of anionic sites.Histochem. J. 16, 657–69.

    PubMed  Google Scholar 

  • Van Kuppevelt, T. H. M. S. M., Cremers, F. P. M. Domen, J. G. W. &Kuyper, C. M. A. (1984b) Staining of proteoglycans in mouse lung alveoli. II. Characterization of the Cuprolinic Blue-positive, anionic sites.Histochem. J. 16, 671–86

    PubMed  Google Scholar 

  • Yoshida, Y., Ushiki, T., Takashio, M., Munger, B. L. &Ide, C. (1989) Membrane relationships in murine Meissner corpuscles: cytology of freeze-substituted tissue.Anat. Rec. 223, 437–45.

    PubMed  Google Scholar 

  • Zeiger, K. (1938)Physikochemische Grundlagen der histologischen Methodik. Dresden, Leipzig: T. Steinkopft Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Preliminary reports on some of these findings were given at the Symposium on Morphological Sciences, Rome 1988 (Realeet al., 1989), at the XI Meeting of the Federation of European Connective Tissue Societies, Amsterdam 1988 (Brandes & Reale, 1988) and at the Symposium ‘Recent Advances in Hereditary Nephritis’, Milan, July 1989 (Reale & Luciano, 1990).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reale, E., Luciano, L. & Brandes, G. Alterations in the morphology of glycoconjugate molecules caused by histochemical procedures: Comparison of renal glomeruli and articular cartilage. Histochem J 24, 153–165 (1992). https://doi.org/10.1007/BF01047465

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01047465

Keywords

Navigation