Skip to main content
Log in

Differential phosphorylation of some proteins of the neuronal cytoskeleton during brain development

  • Cell Components and Cell Function
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almas, B., Pryme, I. F., Vedeler, V. &Hesketh, J. E. (1992) Insulin: signal transmission and short-term effects on the cytoskeleton and protein synthesis.Int. J. Biochem. 24, 183–91.

    Google Scholar 

  • Avila, J., Serrano, L., Hernandez, M. A. &Diaz-Nido, J. (1988) Phosphorylation of neuronal microtubule proteins.Protoplasma 145, 82–99.

    Google Scholar 

  • Baudier, J., Lee, S.-H. &Cole, R. D. (1987) Separation of the different microtubule-associated Tau protein species from bovine brain and their mode II phosphorylation by Ca2+/phospholipid-dependent protein kinase C.J. Biol. Chem. 262, 17584–90.

    Google Scholar 

  • Bennett, V. (1990). Spectrin-based membrane skeleton: a multipotential adaptor between plasma membrane and cytoplasm.Physiol. Rev. 70, 1029–65.

    Google Scholar 

  • Bernhardt, R., Huber, G. &Matus, A. (1985) Differences in the developmental patterns of three microtubule-associated proteins in the rat cerebellum.J. Neurosci 5, 977–91.

    Google Scholar 

  • Binder, L. I., Frankfurter, A., Kim, H., Caceres, A., Payne, M. R. &Rebhun, L. I. (1984) Heterogeneity of microtubule-associated protein 2 during rat brain development.Proc. Natl Acad. Sci. USA 81, 5613–7.

    Google Scholar 

  • Binder, L. I., Frankfurter, A. &Rebhun, L. I. (1985) The distribution of tau polypeptides in the mammalian central nervous system.J. Cell Biol. 103, 1371–8.

    Google Scholar 

  • Bloom, G. S., Schoenfeld, T. A. &Vallee, R. B. (1984) Widespread distribution of the major polypeptide component of MAP1A (microtubule-associated protein 1A) in the nervous system.J. Cell Biol. 98, 320–30.

    Google Scholar 

  • Bloom, G. S., Luca, F. C. &Vallee, R. B. (1985) Microtubule-associated protein 1B: identification of a major component of the neuronal cytoskeleton.Proc. Natl Acad. Sci. USA 82, 5404–8.

    Google Scholar 

  • Brion, J. P., Guilleminot, J., Couchie, D., Flament-Durand, J. &Nunez, J. (1988) Both adult and juvenile tau microtubule-associated proteins are axon specific in the developing and adult rat cerebellum.Neurosci. 25, 139–46.

    Google Scholar 

  • Brugg, B. &Matus, A (1988) PC12 cells express juvenile microtubule-associated proteins during NGF-induced neurite outgrowth.J. Cell Biol. 107, 643–50.

    Google Scholar 

  • Brugg, B. &Matus, A. (1991) Phosphorylation determines the binding of MAP2 to microtubules in living cells.J. Cell Biol. 114, 735–43.

    Google Scholar 

  • Calvert, R. &Anderton, B. H. (1985) A microtubule-associated protein (MAP1) which is expressed at elevated levels during development of the rat cerebellum.EMBO J. 4, 1171–6.

    Google Scholar 

  • Carlier, M. F., Simon, C., Cassoly, R. &Pradel, F. A. (1984) Interaction between microtubule-associated protein tau and spectrin.Biochim. 66, 305–11.

    Google Scholar 

  • Dhermy, D. (1991) The spectrin super-family.Biol. Cell. 71, 249–54.

    Google Scholar 

  • Diaz-Nido, J., Armas-Portela, R. &Avila, J. (1991) Addition of protease inhibitors to culture medium of neuroblastoma cells induces both neurite outgrowth and phosphorylation of microtubule-associated protein MAP1B.J. Cell Sci. 98, 409–14.

    Google Scholar 

  • Figlewicz, D. A., Gremo, F. &Innocenti, G. M. (1988) Differential expression of neurofilament subunits in the developing corpus callosum.Dev. Brain Res. 42, 181–9.

    Google Scholar 

  • Francon, J., Lennon, A. M., Fellous, A., Mareck, A., Pierre, M. &Nunez, J. (1982) Heterogeneity of microtubule-associated proteins and brain development.Eur. J. Biochem. 129, 465–71.

    Google Scholar 

  • Garner, C. C. &Matus, A. (1988) Different forms of microtubule-associated protein 2 are encoded by separate mRNA transcripts.J. Cell Biol. 106, 779–83.

    Google Scholar 

  • Garner, C. C., Brugg, B. &Matus, A. (1988) A 70 kDa microtubule-associated protein (MAP2c) related to MAP2.J. Neurochem. 50, 609–15.

    Google Scholar 

  • Garner, C. C., Matus, A., Anderton, B. &Calvert, R. (1989) Microtubule-associated proteins MAP5 and MAP1x: closely related components of the neuronal cytoskeleton with different cytoplasmic distribution in the developing brain.Molec. Brain Res. 5, 85–92.

    Google Scholar 

  • Goedert, M. &Jakes, R. (1990) Expression of separate isoforms of human Tau protein: correlation with the tau pattern in brain and effects on tubulin polymerization.EMBO J. 9, 4225–30.

    Google Scholar 

  • Goedert, M., Crowther, R. A. &Garner, C. C. (1991) Molecular characterization of microtubule-associated proteins tau and MAP2.Trends Neurosci. 14, 193–9.

    Google Scholar 

  • Goodman, S. R., Zagon, I. S., Whitfield, C. F., Casoria, L. A., Shohet, S. B., Bernstein, S. E., Mclaughlin, P. J. &Laskiewicz, T. L. (1984) A spectrin-like protein from mouse brain membranes: phosphorylation of the 235,000-dalton subunit.Am. J. Physiol. 16, C61–73.

    Google Scholar 

  • Goodman, S. R., Krebs, K. E., Whitfield, C. F., Riederer, B. M. &Zagon, I. S. (1988) Spectrin and related molecules.CRC Crit. Rev. Biochem. 23, 171–234.

    Google Scholar 

  • Guadano-Ferraz, A., Riederer, B. M. &Innocenti, G. M. (1990) Developmental changes in the heavy subunit of neurofilaments in the corpus callosum of the cat.Dev. Brain Res. 56, 244–56.

    Google Scholar 

  • Hadcock, J. R. &Malbon, C. C. (1991) Regulation of receptor expression by agonists: transcriptional and post-transcriptional controls.Trends Neurosci. 14, 242–7.

    Google Scholar 

  • Hisanaga, S. &Hirokawa, N. (1990) Dephosphorylation-induced interactions of neurofilaments with microtubules.J. Cell Biol. 265, 21852–8.

    Google Scholar 

  • Hoshi, M., Akiyama, T., Shinohara, Y., Miyata, Y., Ogawara, H., Nishida, E. &Sakai, H. (1988) Protein-kinase C catalyzed phosphorylation of the microtubule-binding domain of microtubule-associated protein 2 inhibits its ability to induce tubulin polymerization.Eur. J. Biochem. 174, 225–30.

    Google Scholar 

  • Huber, G. &Matus, A. (1984) Differences in the cellular distribution of two microtubule-associated proteins, MAP1, and MAP2, in the rat brainJ. Neurosci. 4, 151–60.

    Google Scholar 

  • Kadowaki, T., Nishida, E., Kasuga, M., Akiyama, T., Takaku, F., Ishikawa, M., Sakai, H., Kathurida, S. &Fujita-Yamaguchi, Y. (1985) Phosphorylation of fodrin (nonerythroid spectrin) by the purified insulin receptor kinase.Biochem. Biophys. Res. Com. 127, 493–500.

    Google Scholar 

  • Kyriakis, J. M. &Avruch, J. (1990) pp54 microtubule-associated protein 2 kinase.J. Biol. Chem. 265, 17 355–63.

    Google Scholar 

  • Lee, G. (1990) Tau protein: an update on structure and function.Cell Mot. Cytoskel. 15, 199–203.

    Google Scholar 

  • Lindwall, G. &Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assemblyJ. Biol. Chem. 259, 5301–5.

    Google Scholar 

  • Mareck, A., Fellous, A., Francon, J. &Nunez, J. (1980) Changes in composition and activity of microtubule-associated proteins during brain development.Nature 284, 353–45.

    Google Scholar 

  • Matus, A. (1988) Microtubule-associated proteins: their potential role in determining neuronal morphology.Ann. Rev. Neurosci. 11, 29–44.

    Google Scholar 

  • Mochly-Rosen, D., Henrich, C. J., Cheever, L., Khaner, H. &Simpson, P. C. (1990) A protein kinase C isozyme is translocated to cytoskeletal elements on activation.Cell Reg. 1, 693–706.

    Google Scholar 

  • Murthy, A. S. &Flavin, M. (1983) Microtubule assembly using microtubule-associated protein MAP2 prepared in defined states of phosphorylation with protein kinase and phosphatase.Eur. J. Biochem. 137, 37–46.

    Google Scholar 

  • Nestler, E. J., Walaas, S. I. &Greengard, P. (1984) Neuronal phosphoproteins: physiological and clinical implications.Science 225, 1357–64.

    Google Scholar 

  • Nixon, R. A. &Sihag, R. (1991) Neurofilament phosphorylation: a new look at regulation and function.Trends Neurosci.14, 501–6.

    Google Scholar 

  • Papasozomenos, S. Ch. &Binder, L. I. (1987) Phosphorylation determines two distinct species of tau in the central nervous system.Cell Motil. Cytoskel. 8, 210–26.

    Google Scholar 

  • Payrastre, B., Van Bergen En Hennegouwen, P. M. P., Breton, M., Hartigh, J. C., Plantavid, M., Verkleij, A. J. &Boonstra, J. (1991) Phosphoinositide kinase, diacylglycerol kinase and phospholipase C activities associated to the cytoskeleton: effect of epidermal growth factor.J. Cell Biol. 115, 121–8.

    Google Scholar 

  • Pollerberg, E., Burridge, K., Krebs, K., Goodman, S. &Schachner, M. (1987) The 180 kD component of the neural cell adhesion molecule N-CAM is involved in cell-cell contacts and cytoskeleton-membrane interactions.Cell Tissue Res. 250, 227–36.

    Google Scholar 

  • Riederer, B. M. (1990) Some aspects of the neuronal cytoskeleton in development.Eur. J. Morphol. 28, 347–78.

    Google Scholar 

  • Riederer, B. M. &Innocenti, G. M. (1991), Differential distribution of tau proteins in developing cat cerebral cortex and corpus callosum.Eur. J. Neurosci. 3, 1134–45.

    Google Scholar 

  • Riederer, B.M. & Innocenti, G.M. (1992) MAP2 isoforms in developing cat cerebral cortex and corpus callosum.Eur. J. Neurosci. (in press).

  • Riederer, B. &Matus, A. (1985) Differential expression of distinct microtubule-associated proteins during brain development.Proc. Natl. Acad. Sci. USA,82, 6006–9.

    Google Scholar 

  • Riederer, B., Cohen, R. &Matus, A., (1986) MAP5: a novel brain microtubule-associated protein under strong developmental regulation.J. Neurocytol. 15, 763–75.

    Google Scholar 

  • Riederer, B. M., Zagon, I. S. &Goodman, S. R. (1987) Brain spectrin (240/235) and brain spectrin (240/235E): differential expression during mouse brain development.J. Neurosci. 7, 864–74.

    Google Scholar 

  • Riederer, B. M., Guadano-Ferraz, A. &Innocenti, G. M. (1990) Difference in distribution of microtubule-associated protein 5a and 5b during the development of cerebral cortex and corpus callosum in cats: dependence on phosphorylation.Dev. Brain Res. 56, 235–43.

    Google Scholar 

  • Riederer, B. M., Monnet-Tschudi, F. &Honegger, P. (1992) Development of the neuronal cytoskeleton in aggregated cell cultures of fetal rat telencephalon and influence of elevated K+ concentrations.J. Neurochem. 58, 649–58.

    Google Scholar 

  • Robinson, P. A. &Anderton, B. H. (1988) Neurofilament probes—a review of neurofilament distribution and biology.Rev. Neurosci. 2, 1–40.

    Google Scholar 

  • Sano, M., Nishiyama, K. &Kitajiama, S. (1990) A nerve growth factor-dependent protein kinase that phosphorylated microtubule-associated proteins in vitro: possible involvement of its activity in the outgrowth of neurites form PC12 cells.J. Neurochem. 55, 427–35.

    Google Scholar 

  • Seger, R., Ahn, N. G., Boulton, T. G., Yancopoulos, G. D., Panayotatos, N., Radziejewska, E., Ericson, L., Bratlien, R. L., Cobb, M. H. &Krebs, E. G. (1991) Microtubule-associated protein 2 kinases, ERK1 and ERK2, undergo autophosphorylation of both tyrosine and threonine residues: implications for their mechanism of activation.Proc. Natl Acad. Sci. USA 88, 6142–6.

    Google Scholar 

  • Stefanova, I., Horejsi, V., Ansotegui, I. J., Knapp, W. &Stockinger, H. (1991) GPI-anchored cell-surface molecules complexed to protein tyrosine kinases.Science 254, 1016–9.

    Google Scholar 

  • Steiner, B., Mandelkow, E. M., Biernat, J., Guske, N., Meyer, H. E., Schmidt, B., Mieskes, G., Soelling, H. D., Drechsel, D., Kirschner, M. W., Goedert, M. &Mandelkow, E. (1990) Phosphorylation of microtubule-associated protein tau: identification of the site for Ca2+-calmodulin dependent kinase and the relationship with tau phosphorylation in Alzheimer tangles.EMBO J. 9, 3539–44.

    Google Scholar 

  • Theurkauf, W. &Vallee, R. B. (1983) Extensive cAMP-dependent and cAMP-independent phosphorylation of microtubule-associated protein 2.J. Biol. Chem. 258, 7883–6.

    Google Scholar 

  • Tucker, R. P., Binder, L. I. &Matus, A. I. (1988a) Neuronal microtubule-associated proteins in the embryonic avian spinal cord.J. Comp. Neurol. 271, 44–55.

    Google Scholar 

  • Tucker, R. P., Binder, L. I., Viereck, C., Hemmings, B. A. &Matus, A. I. (1988b) The sequential appearance of low and high-molecular-weight forms of MAP2 in the developing cerebellum.J. Neurosci. 8, 4503–12.

    Google Scholar 

  • Vallee, R. B. (1982) A taxol-dependent procedure for the isolation of microtubules and microtubule-associated proteins (MAPs).J. Cell Biol. 92, 435–42.

    Google Scholar 

  • Yamamoto, H., Fukunaga, K., Tanaka, E. &Miyamoto, E. (1983) Ca2+-and calmodulin-dependent phosphorylation of microtubule-associated protein 2 and tau factor, and inhibition of microtubule assembly.J. Neurochem. 41, 1119–25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riederer, B.M. Differential phosphorylation of some proteins of the neuronal cytoskeleton during brain development. Histochem J 24, 783–790 (1992). https://doi.org/10.1007/BF01046350

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01046350

Keywords

Navigation