Skip to main content
Log in

Conditions for the Existence of Basic Solutions of Linear Multivalued Differential Equations

  • Published:
Ukrainian Mathematical Journal Aims and scope

We discuss various definitions and properties of the derivatives of set-valued mappings. We also consider a linear set-valued differential equation and investigate the problem of existence of solutions of this equation with Hukuhara derivative, PS-derivative, and BG-derivative. The obtained results are illustrated by model examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. S. de Blasi and F. Iervolino, “Equazioni differentiali con soluzioni a valore compatto convesso,” Boll. Unione Mat. Ital., 2, No. 4-5, 491–501 (1969).

    MATH  Google Scholar 

  2. V. Lakshmikantham, B. T. Granna, and J. V. Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Sci. Publ., Cambridge (2006).

    Google Scholar 

  3. V. Lupulescu and D. O’Regan, “A new derivative concept for set-valued and fuzzy-valued functions. Differential and integral calculus in quasilinear metric spaces,” Fuzzy Sets Syst., 404, 75–110 (2021).

    Article  MathSciNet  Google Scholar 

  4. A. A. Martynyuk, Qualitative Analysis of Set-Valued Differential Equations, Springer Nature Switzerland AG, Birkhäuser, Cham (2019).

    Book  Google Scholar 

  5. N. A. Perestyuk, V. A. Plotnikov, A. M. Samoilenko, and N. V. Skripnik, Differential Equations with Impulse Effects: Multivalued Right-Hand Sides with Discontinuities, De Gruyter, Berlin (2011).

    Book  Google Scholar 

  6. A.V. Plotnikov and N. V. Skripnik, Differential Equations with Clear and Fuzzy Multivalued Right-Hand Side. Asymptotic Methods [in Russian], AstroPrint, Odessa (2009).

    Google Scholar 

  7. V. A. Plotnikov, A.V. Plotnikov, and A. N. Vityuk, Differential Equations with Multivalued Right-Hand Side. Asymptotic Methods [in Russian], AstroPrint, Odessa (1999).

    Google Scholar 

  8. A. Tolstonogov, Differential Inclusions in a Banach Space, Kluwer AP, Dordrecht (2000).

    Book  Google Scholar 

  9. A.V. Plotnikov, T. A. Komleva, and L. I. Plotnikova, “Averaging of a system of set-valued differential equations with the Hukuhara derivative,” J. Uncertain Systems, 13, No. 1, 3–13 (2019).

    Google Scholar 

  10. M. Hukuhara, “Integration des applications mesurables dont la valeur est un compact convexe,” Funkcial. Ekvac., No. 10, 205–223 (1967).

    MathSciNet  MATH  Google Scholar 

  11. H. Minkowski, “Zur Geometrie der Zahlen,” Verhandlungen des III Internationalen Mathematiker-Kongresses in Heidelberg, Heidelberg, Berlin (1904), pp. 164–173.

  12. T. A. Komleva, L. I. Plotnikova, N. V. Skripnik, and A.V. Plotnikov, “Some remarks on linear set-valued differential equations,” Stud. Univ. Babeş-Bolyai Math., 65, No. 3, 415–431 (2020); DOI: https://doi.org/10.24193/subbmath.2020.3.09.

    Article  MathSciNet  Google Scholar 

  13. A.V. Plotnikov and N. V. Skripnik, “Set-valued differential equations with generalized derivative,” J. Adv. Res. Pure Math., 3, No. 1, 144–160 (2011); DOI: https://doi.org/10.5373/jarpm.475.062210.

    Article  MathSciNet  Google Scholar 

  14. Ş. E. Amrahov, A. Khastan, N. Gasilov, and A. G. Fatullayev, “Relationship between Bede–Gal differentiable set-valued functions and their associated support functions,” Fuzzy Sets Syst., 265, 57–72 (2016); DOI: https://doi.org/10.1016/j.fss.2015.12.002.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. T. Malinowski, “Second type Hukuhara differentiable solutions to the delay set-valued differential equations,” Appl. Math. Comput., 218, 9427–9437 (2012); DOI: https://doi.org/10.1016/j.amc.2012.03.027.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. T. Malinowski, “On set differential equations in Banach spaces—a second type Hukuhara differentiability approach,” Appl. Math. Comput., 219, 289–305 (2012); DOI: https://doi.org/10.1016/j.amc.2012.06.019.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Vu and L. S. Dong, “Initial value problem for second-order random fuzzy differential equations,” Adv. Difference Equat., 2015, Article 373, 23 p. (2015); DOI: https://doi.org/10.1186/s13662-015-0710-5.

  18. H. Vu and N. Van Hoa, “On impulsive fuzzy functional differential equations,” Iran. J. Fuzzy Syst., 13, No. 4, 79–94 (2016); DOI: https://doi.org/10.22111/IJFS.2016.2597.

    Article  MathSciNet  MATH  Google Scholar 

  19. E. S. Polovinkin, Multivalued Analysis and Differential Inclusions [in Russian], Fizmatlit, Moscow (2014).

  20. T. F. Bridgland, “Trajectory integrals of set valued functions,” Pacif. J. Math., 33, No. 1, 43–68 (1970).

    Article  MathSciNet  Google Scholar 

  21. H. T. Banks and M. Q. Jacobs, “A differential calculus for multifunctions,” J. Math. Anal. Appl., 29, 246–272 (1970); DOI: https://doi.org/10.1016/0022-247X(70)90078-8.

    Article  MathSciNet  MATH  Google Scholar 

  22. Yu. N. Tyurin, “Mathematical statement of the simplified model of industrial planning,” Econ. Math. Meth., 3, 391–409 (1965).

    Google Scholar 

  23. A.V. Plotnikov, “Differentiation of multivalued mappings. T-derivative,” Ukr. Mat. Zh., 52, No. 8, 1119–1126 (2000); English translation: Ukr. Math. J., 52, No. 8, 1282–1291 (2000).

  24. Y. Chalco-Cano, H. Roman-Flores, and M. D. Jimenez-Gamero, “Generalized derivative and 𝜋-derivative for set-valued functions,” Inform. Sci., 181, No. 11, 2177–2188 (2011); DOI: https://doi.org/10.1016/j.ins.2011.01.023.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Lasota and A. Strauss, “Asymptotic behavior for differential equations which cannot be locally linearized,” J. Different. Equat., 10, 152–172 (1971); DOI: https://doi.org/10.1016/0022-0396(71)90103-3.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Martelli and A. Vignoli, “On differentiability of multi-valued maps,” Boll. Unione Mat. Ital., 10, 701–712 (1974).

    MATH  Google Scholar 

  27. N. V. Plotnikova, “Systems of linear differential equations with 𝜋-derivative and linear differential inclusions,” Sb. Math., 196, No. 11, 1677–1691 (2005); DOI: https://doi.org/10.1070/SM2005v196n11ABEH003727.

    Article  MathSciNet  MATH  Google Scholar 

  28. N. V. Hoa and N. D. Phu, “Fuzzy functional integro-differential equations under generalized H-differentiability,” J. Intell. Fuzzy Syst., 26, 2073–2085 (2014); DOI: https://doi.org/10.3233/IFS-130883.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. D. Phu and N. N. Hung, “Minimum stability control problem and time-optimal control problem for fuzzy linear control systems,” Fuzzy Sets Syst., 371, 1–24 (2019); DOI: https://doi.org/10.1016/j.fss.2018.09.005.

    Article  MathSciNet  MATH  Google Scholar 

  30. B. Bede and S. G. Gal, “Almost periodic fuzzy-number-valued functions,” Fuzzy Sets Syst., 147, 385–403 (2004); DOI: https://doi.org/10.1016/j.fss.2003.08.004.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Bede and S. G. Gal, “Generalizations of the differentiability of fuzzy number valued functions with applications to fuzzy differential equation,” Fuzzy Sets Syst., 151, 581–599 (2005); DOI: https://doi.org/10.1016/j.fss.2004.08.001.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. Stefanini and B. Bede, “Generalized Hukuhara differentiability of interval-valued functions and interval differential equations,” Nonlin. Anal., 71, 1311–1328 (2009); DOI: https://doi.org/10.1016/j.na.2008.12.005.

    Article  MathSciNet  MATH  Google Scholar 

  33. N. V. Plotnikova, “Approximation of a bundle of solutions of linear differential inclusions,” Nelin. Kolyv., 9, No. 3, 386–400 (2006); English translation: Nonlin. Oscillat., 9, No. 3, 375–390 (2006).

  34. V. G. Boltyanski and J. Jerónimo Castro, “Centrally symmetric convex sets,” J. Convex Anal., 14, No. 2, 345–351 (2007).

    MathSciNet  MATH  Google Scholar 

  35. A.V. Plotnikov and N. V. Skripnik, “Existence and uniqueness theorems for generalized set differential equations,” Int. J. Control Sci. Eng., 2, No. 1, 1–6 (2012); DOI: https://doi.org/10.5923/j.control.20120201.01.

    Article  Google Scholar 

  36. A.V. Plotnikov and N. V. Skripnik, “An existence and uniqueness theorem to the Cauchy problem for generalized set differential equations,” Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 20, No. 4, 433–445 (2013).

    MathSciNet  MATH  Google Scholar 

  37. A.V. Plotnikov and N. V. Skripnik, “Conditions for the existence of local solutions of set-valued differential equations with generalized derivative,” Ukr. Mat. Zh., 65, No. 10, 1350–1362 (2013); English translation: Ukr. Math. J., 65, No. 10, 1498–1513 (2014).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.V. Plotnikov.

Additional information

L. I. Plotnikova is deceased.

Translated from Ukrains’kyi Matematychnyi Zhurnal, Vol. 73, No. 5, pp. 651–673, May, 2021. Ukrainian DOI: 10.37863/umzh.v73i5.6356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komleva, T.A., Plotnikov, A., Plotnikova, L.I. et al. Conditions for the Existence of Basic Solutions of Linear Multivalued Differential Equations. Ukr Math J 73, 758–783 (2021). https://doi.org/10.1007/s11253-021-01958-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11253-021-01958-3

Navigation