Skip to main content
Log in

Phylogenetic relationships of the endemic malagasy carnivoreCryptoprocta ferox (Aeluroidea): DNA/DNA hybridization experiments

  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A molecular and morphological study of several living aeluroid Carnivora was completed to evaluate the evolutionary relationships of the endemicCryptoprocta ferox, a carnivore living on the island of Madagascar. The molecular analysis, based on DNA/DNA hybridization experiments, suggests thatCryptoprocta is more closely related to the Herpestidae (as represented byMungos andIchneumia) than it is to the Viverrinae (Genetta), Paradoxurinae (Paguma, Paradoxurus), Felidae (Felis, Panthera), or Hyaenidae (Crocuta). Based on bootstrapping procedures applied to the individual DNA/DNA results, three branching patterns were observed which differ only by the relative position of the Felidae within the Aeluroidea. The amounts of genetic divergence measured between pairs of compared taxa have been transformed into millions years datings by the molecular clock concept, and this was done by establishing a molecular time scale based on the fossil record of the aeluroid Carnivora.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  • Beaumont, G. de (1964). Remarques sur la classification des Felidae.Ecol. Geol. Helv. 57 837–845.

    Google Scholar 

  • Bennett, E. T. (1833). Notice of a new genus ofViverridous Mammalia from Madagascar.Proc. Zool. Soc London 1833 46.

    Google Scholar 

  • Benveniste, R. E. (1985). The contributions of retroviruses to the study of mammalian evolution. In:Molecular Evolutionary Genetics, R. J. MacIntyre, ed., pp. 359–417, Plenum Press, New York.

    Google Scholar 

  • Blainville, H. de (1842).Osteographie ou description iconographique du squelette et du système dentaire des Mammifères récents ou fossiles, Vol. 2, Baillière, Paris.

    Google Scholar 

  • Bledsoe, A. H. (1987). Estimation of phylogeny from molecular distance data: The issue of variable rates.Auk 104 563–565.

    Google Scholar 

  • Bonner, T. I., Brenner, D. J., and Todaro, G. J. (1980). Evolution of DNA sequences has been retarded in Malagasy primates.Nature 286 420–423.

    Google Scholar 

  • Catzeflis, F. M. (1990). DNA hybridization as a guide to phylogenies: Raw data in muroid rodents. In:Evolution of Subterranean Mammals at the Organismal and Molecular Levels E. Nevo and O. A. Reig, eds., pp. 317–345, Wiley-Liss, New York.

    Google Scholar 

  • Catzeflis, F. (1991). Animal tissue collections for molecular genetics and systematics.Trend Ecol. Evol. (TREE) 6 168.

    Google Scholar 

  • Catzeflis, F. M., Sheldon, F. H., Ahlquist, J. E., and Sibley, C. G. (1987). DNA-DNA hybridization evidence of the rapid rate of muroid rodent DNA evolution.Mol. Biol. Evol. 4: 242–253.

    Google Scholar 

  • Champion, A. B., Prager, E. M., Wachter, D., and Wilson, A. C. (1974). Microcomplement fixation. In:Biochemical and Immunological Taxonomy of Animals, C. A. Wright, ed., pp. 397–416, Academic Press, London.

    Google Scholar 

  • Chevret, P., Denys, C., Jaeger, J.-J., Michaux, J., and Catzeflis, F. M. (1993). Molecular evidence that the spiny mouse (Acomys) is more closely related to gerbils (Gerbillinae) than to true mice (Murinae).Proc. Natl. Acad. Sci. USA 90 3433–3436.

    Google Scholar 

  • Eisentraut, M. (1989). Das Gaumenfaltermuster bei einigen madagassischen Viverriden und ein vergleich mit festländischen Vertretern.Bonn. Zool. Beitr. 40 79–84.

    Google Scholar 

  • Felsenstein, J. (1990).PHYLIP—Phylogeny Inference Package, Version 3.3, University of Washington, Seattle.

    Google Scholar 

  • Flower, W. H. (1869). On the value of the characters of the base of the cranium in the classification of the Order Carnivora, and on the systematic position ofBassaris and other disputed forms.Proc. Zool. Soc. London 1869 4–37.

    Google Scholar 

  • Flynn, J. M., and Galliano, H. (1982). Phylogeny of early Tertiary Carnivora, with a description of a new species ofProtictis from the middle Eocene of Northwestern Wyoming.Am. Mus. Novit. 2632 1–16.

    Google Scholar 

  • Flynn, J. M., Neff, N. A., and Tedford, R. H. (1988). Phylogeny of the Carnivora. In:The Phylogeny and Classification of the Tetrapods, Vol. 2, M. J. Benton, ed., pp. 73–115, Clarendon Press, Oxford.

    Google Scholar 

  • Ginsburg, L. (1961). La faune des carnivores miocènes de Sansan (Gers).Mém. Mus. Natl. Hist. Nat. Nouv. Sér., Sér. C 9 1–187.

    Google Scholar 

  • Gregory, W. K., and Hellman, M. (1939). On the evolution and major classification of the civets (Viverridae) and allied fossil and Recent Carnivora: A phylogenetic study of the skull and dentition.Proc. Am. Philos. Soc. 81 309–392.

    Google Scholar 

  • Hemmer, H. (1978). The evolutionary systematics of the living Felidae. Present status and current problems.Carnivore 1 71–79.

    Google Scholar 

  • Honacki, J. H., Kinman, K. E., and Koeppl, J. W. (1982).Mammal Species of the World, p. 694, Allen Press, New York.

    Google Scholar 

  • Hunt, J. A., Hall, T. J., and Britten, R. J. (1981). Evolutionary distances in HawaiianDrosophila measured by DNA reassociation.J. Mol. Evol. 17 361–367.

    Google Scholar 

  • Hunt, R. M. (1987). Evolution of the aeluroid Carnivora: Significance of auditory structure in the nimravid catDinictis.Am. Mus. Novit. 2886 1–74.

    Google Scholar 

  • Hunt, R. M. (1989). Evolution of the aeluroid Carnivora: Significance of the ventral promontorial process of the petrosal, and the origin of basicranial patterns in the living families.Am. Mus. Novit. 2930 1–32.

    Google Scholar 

  • Hunt, R. M. (1991). Evolution of the aeluroid Carnivora: Viverrid affinities of the Miocene carnivoranHerpestides.Am. Mus. Novit. 3023 1–34.

    Google Scholar 

  • Hunt, R. M., and Solounias, N. (1991). Evolution of the aeluroid Carnivora: Hyaenid affinities of the Miocene carnivoranTungurictys spocki from Inner Mongolia.Am. Mus. Novit. 3030 1–25.

    Google Scholar 

  • Jukes, T. H., and Cantor, C. R. (1969). Evolution of protein molecules. In:Mammalian Protein Metabolism, H. N. Munro, ed., pp. 21–123, Academic Press, Orlando, FL.

    Google Scholar 

  • Kirsch, J. A. W., Ganje, R. J., Olesen, K. G., Hoffman, D. W., and Bledsoe, A. H. (1990). TED, an improved thermal elution device for the simultaneous hydroxyapatite chromatography of solution DNA/DNA hybrids.Biotechniques 8 506–507.

    Google Scholar 

  • Köhncke, M., and Leonhardt, K. (1986).Cryptoprocta ferox.Mammal. Sp. (Am. Soc. Mammal.) 254 1–5.

    Google Scholar 

  • Krajewski, C., and Dickerman, A. W. (1990). Bootstrap analysis of phylogenetic trees derived from DNA hybridization distances.Syst. Zool. 39 383–390.

    Google Scholar 

  • Lavocat, R. (1952). Sur les affinités de quelques carnassiers de l'Oligocène d'Europe, notamment du genrePlesictis Pomel et du genreProailurus Filhol.Mammalia 16 62–72.

    Google Scholar 

  • Marks, J., Schmid, C. W., and Sarich, V. M. (1988). DNA hybridization as a guide to phylogeny: Relations of the Hominoidea.J. Hum. Evol. 17 769–786.

    Google Scholar 

  • Milne-Edwards, A., and Grandidier, A. (1867). Observations anatomiques sur quelques Mammiferes de Madagascar. Premier article: De l'organisation duCryptoprocta ferox.Ann. Sci. Nat. Ser. 5, Zool. 7 314–338, plates 7–10.

    Google Scholar 

  • Mivart, St. G. (1882). On the classification and distribution of Aeluroidea.Proc. Zool. Soc. Lond. 1882 135–208.

    Google Scholar 

  • Petter, G. (1974). Rapports phylétiques des Viverridae (Carnivores Fissipèdes). Les formes de Madagascar.Mammalia 38 605–636.

    Google Scholar 

  • Pocock, R. I. (1916). On the course of the internal carotid artery and the foramina connected therewith in the skulls of the Felidae and Viverridae.Ann. Mag. Nat. Hist. Ser. 8 17 261–269, plates 10–11.

    Google Scholar 

  • Sarich, V. M., and Cronin, J. E. (1976). Molecular systematics of the Primates. In:Molecular Anthropology, M. Goodman and R. Tashian, eds., pp. 141–170, Plenum Press, New York.

    Google Scholar 

  • Savage, D. E., and Russell, D. E. (1983).Mammalian Paleofaunas of the World, Addison-Wesley, London.

    Google Scholar 

  • Schmidt-Kittler, N. (1987). The Carnivora (Fissipedia) from the lower Miocene of East Africa.Paleontograph. Abt. 197(A): 85–126.

    Google Scholar 

  • Sheldon, F. H. (1987). Rates of single-copy DNA evolution in herons.Mol. Biol. Evol. 4 56–69.

    Google Scholar 

  • Sheldon, F. H., and Bledsoe, A. H. (1989). Indexes to the reassociation and stability of solution DNA hybrids.J. Mol. Evol. 29 328–343.

    Google Scholar 

  • Sheldon, F. H., Slikas, B., Kinnarney, M., Gill, F. B., Zhao, E., and Silverin, B. (1992). DNA-DNA hybridization evidence of phylogenetic relationships among major lineages ofParus.Auk 109 173–185.

    Google Scholar 

  • Sibley, C. G., and Ahlquist, J. E. (1990).Phylogeny and Classification of Birds: A Study in Molecular Evolution, Yale University Press, New Haven, CT.

    Google Scholar 

  • Simpson, G. G. (1945). The principles of classification and a classification of mammals.Bull. Am. Mus. Nat. Hist. 85 1–350.

    Google Scholar 

  • Springer, M. S., and Krajewski, C. (1989). DNA hybridization in animal taxonomy: A critique from first principles.Rev. Biol. 64 291–318.

    Google Scholar 

  • Springer, M. S., Kirsch, J. A. W., Aplin, K., and Flannery, T. (1990). DNA hybridization, cladistics, and the phylogeny of phalangerid marsupials.J. Mol. Evol. 30 298–311.

    Google Scholar 

  • Springer, M. S., Davidson, E. H., and Britten, R. J. (1992). Calculation of sequence divergence from thermal stability of DNA heteroduplexes,J. Mol. Evol. 34 379–382.

    Google Scholar 

  • Stains, H. J. (1984). Carnivores. In:Orders and Families of Recent Mammals of the World, S. Anderson and J. K. Jones, eds., pp. 491–522, Wiley and Sons, New York.

    Google Scholar 

  • Teilhard de Chardin, P. (1915). Les carnassiers des Phosphorites de Quercy.Ann. Paléontol. 9 103–191.

    Google Scholar 

  • Wayne, R. K., Benveniste, R. E., Janczewski, D. N., and O'Brien, S. J. (1989). Molecular and biochemical evolution of the Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 465–494, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Werman, S. D., Springer, M. S., and Britten, R. J. (1990). Nucleic acids: DNA-DNA hybridization. In:Molecular Systematics, D. M. Hillis and C. Moritz, eds., pp. 204–249, Sinauer Associates, Sunderland, MA.

    Google Scholar 

  • Wozencraft, W. C. (1984).A Phylogenetic Reappraisal of the Viverridae and Its Relationships to Other Carnivora, Ph.D. dissertation., University of Kansas, Lawrence.

    Google Scholar 

  • Wozencraft, W. C. (1989a). The phylogeny of the Recent Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 495–535, Cornell University Press, Ithaca, NY.

    Google Scholar 

  • Wozencraft, W. C. (1989b). Classification of the Recent Carnivora. In:Carnivore Behavior, Ecology and Evolution, J. L. Gittleman, ed., pp. 569–593, Cornell University Press, Ithaca, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veron, G., Catzeflis, F.M. Phylogenetic relationships of the endemic malagasy carnivoreCryptoprocta ferox (Aeluroidea): DNA/DNA hybridization experiments. J Mammal Evol 1, 169–185 (1993). https://doi.org/10.1007/BF01024706

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01024706

Key words

Navigation