Skip to main content
Log in

Self-consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. II. Longitudinal and transverse density distributions in the liquid-vapor interface of binary metallic alloys

  • Articles
  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present the results of Monte Carlo simulations of the liquid-vapor interface of sodium-cesium alloys. The longitudinal density profile of each alloy shows that the liquid-vapor interface consists of a well-defined monolayer of cesium sitting on top of a slab of the bulk alloy. Underneath the monolayer there is a slight excess of sodium. A comparison with a van der Waals analog of one of the alloys shows that the presence of the well-defined monolayer of cesium on the outside of the liquid-vapor interface is a feature peculiar to metallic mixtures. The transverse pair correlation functions of the cesium monolayer are insensitive to the composition of the bulk of the slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. F. Abraham, D. E. Schreiber, and J. A. Barker,J. Chem. Phys. 62:1958 (1975).

    Google Scholar 

  2. M. P. D'Evelyn and S. A. Rice,J. Chem. Phys. 78:5225 (1983).

    Google Scholar 

  3. M. P. D'Evelyn and S. A. Rice,J. Chem. Phys. 78:5081 (1983).

    Google Scholar 

  4. J. G. Harris, J. Gryko, and S. A. Rice,J. Chem. Phys. 86:1067 (1987).

    Google Scholar 

  5. J. W. Allen and S. A. Rice,J. Chem. Phys. 68:5053 (1978).

    Google Scholar 

  6. Jan Gryko and S. A. Rice,J. Chem. Phys. 80:6318 (1984).

    Google Scholar 

  7. S. Wang and S. K. Lai,J. Phys. F 10:2717 (1980).

    Google Scholar 

  8. T. L. Gilbert,J. Chem. Phys. 49:2640 (1968).

    Google Scholar 

  9. J. C. Upadhyaya, S. Wang, and R. A. Moore,Can. J. Phys. 58:905 (1980).

    Google Scholar 

  10. J. J. Rehr, E. Zaremba, and W. Kohn,Phys. Rev. B 12:2062 (1975).

    Google Scholar 

  11. C. H. Woo, S. Wang, and M. Matsuura,J. Phys. F 5:1836 (1975).

    Google Scholar 

  12. S. Wang, S. K. Lai, and C. B. So,J. Phys. F 10:445 (1980).

    Google Scholar 

  13. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,J. Chem. Phys. 21:1087 (1953).

    Google Scholar 

  14. G. A. Chapela, G. Saville, S. M. Thompson, and J. S. Rowlinson,Chem. Soc. Faraday II 73:1133 (1977).

    Google Scholar 

  15. J. G. Harris, J. Gryko, and S. A. Rice,J. Chem. Phys. 86:5731 (1987).

    Google Scholar 

  16. S. M. Foiles and N. W. Ashcroft,Phys. Rev. A 30:3136 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, J.G., Gryko, J. & Rice, S.A. Self-consistent Monte Carlo simulations of the electron and ion distributions of inhomogeneous liquid alkali metals. II. Longitudinal and transverse density distributions in the liquid-vapor interface of binary metallic alloys. J Stat Phys 48, 1109–1128 (1987). https://doi.org/10.1007/BF01009536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01009536

Key words

Navigation