Skip to main content
Log in

Predicting macroscopic thermal expansion of metastable liquid metals with only one thousand atoms

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Results of thermal expansion prediction from atomic scale for metastable liquid metals are reported herein. Three pure liquid metals Ni, Fe, and Cu together with ternary Ni60Fe20Cu20 alloy are used as models. The pair distribution functions were employed to monitor the atomic structure. This indicates that the simulated systems are ordered in atomic short range and disordered in long range. The thermal expansion coefficient was computed as functions of temperature and atom cutoff radius, which tends to maintain a constant when the cutoff radius increases to approximately 15 Å. In such a case, slightly more than 1000 atoms are required for liquid Ni, Cu, Fe and Ni60Fe20Cu20 alloy, that is, the macroscopic thermal expansion can be predicted from the volume change of such a tiny cell. Furthermore, the expansion behaviors of the three types of atoms in liquid Ni60Fe20Cu20 alloy are revealed by the calculated partial expansion coefficient. This provides a fundamental method to predict the macroscopic thermal expansion from the atomic scale for liquid alloys, especially in the undercooled regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zheng J P, Birktoft J J, Chen Y, et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature, 2009, 461: 74–77

    Article  ADS  Google Scholar 

  2. Zhu X, Lv B, Wei F, et al. Disorder-induced bulk superconductivity in ZrTe3 single crystals via growth control. Phys Rev B, 2013, 87: 024508

    Article  ADS  Google Scholar 

  3. Schuh C A, Lund A C. Atomistic basis for the plastic yield criterion of metallic glass. Nat Mater, 2003, 2: 449–452

    Article  ADS  Google Scholar 

  4. Levashov V A, Morris J R, Egami T. Viscosity, shear waves, and atomic-level stress-stress correlations. Phys Rev Lett, 2011, 106: 115703

    Article  ADS  Google Scholar 

  5. Erichsen J, Shiferaw T, Zaporojtchenko V, et al. Surface glass transition in bimodal polystyrene mixtures. Eur Phys J E, 2007, 24: 243–246

    Article  Google Scholar 

  6. Wang H P, Wei B B. Understanding atomic-scale phase separation of liquid Fe-Cu alloy. Chin Sci Bull, 2011, 56: 3416–3419

    Article  Google Scholar 

  7. Wang H P, Chang J, Wei B. Measurement and calculation of surface tension for undercooled liquid nickel and its alloy. J Appl Phys, 2009, 106: 033506

    Article  ADS  Google Scholar 

  8. Foroughi H, Abbasi A, Das K S, et al. Immiscible displacement of oil by water in a microchannel: Asymmetric flow behavior and nonlinear stability analysis of core-annular flow. Phys Rev E, 2012, 85: 026309

    Article  ADS  Google Scholar 

  9. Van V S, Srinivasan S, Saghir M Z. Thermodiffusion in multicomponent hydrocarbon mixtures: Experimental investigations and computational analysis (vol 131, 114505, 2009). J Chem Phys, 2010, 132: 099901

    Article  ADS  Google Scholar 

  10. Eslamian M, Saghir M Z. Dynamic thermodiffusion model for binary liquid mixtures. Phys Rev E, 2009, 80: 061201

    Article  ADS  Google Scholar 

  11. Chang J, Wang H P, Zhou K, et al. Rapid dendritic growth and solute trapping within undercooled ternary Ni-5%Cu-5%Mo alloy. Appl Phys A, 2012, 109: 139–143

    Article  ADS  Google Scholar 

  12. Dragnevski K, Cochrane R F, Mullis A M. Experimental evidence for dendrite tip splitting in deeply undercooled, ultrahigh purity Cu. Phys Rev Lett, 2002, 89: 215502

    Article  ADS  Google Scholar 

  13. Mullis A M, Dragnevski K L, Cochrane R F. The transition from the dendritic to the seaweed growth morphology during the solidification of deeply undercooled metallic melts. Mater Sci Eng A, 2004, 375: 157–162

    Article  Google Scholar 

  14. Corradini D, Rovere M, Gallo P. Structural properties of high and low density water in a supercooled aqueous solution of salt. J Phys Chem B, 2011, 115: 1461–1468

    Article  Google Scholar 

  15. Gheribi A E. Molecular dynamics study of stable and undercooled liquid zirconium based on MEAM interatomic potential. Mater Chem Phys, 2009, 116: 489–496

    Article  Google Scholar 

  16. Hedges L O, Jack R L, Garrahan J P, et al. Dynamic order-disorder in atomistic models of structural glass formers. Science, 2009, 323: 1309–1313

    Article  ADS  Google Scholar 

  17. Deville S, Maire E, Bernard-Granger G, et al. Metastable and unstable cellular solidification of colloidal suspensions. Nat Mater, 2009, 8: 966–972

    Article  ADS  Google Scholar 

  18. Oh S H, Kauffmann Y, Scheu C, et al. Ordered liquid aluminum at the interface with sapphire. Science, 2005, 310: 661–663

    Article  ADS  Google Scholar 

  19. Debenedetti P G, Stillinger F H. Supercooled liquids and the glass transition. Nature, 2001, 410: 259–267

    Article  ADS  Google Scholar 

  20. Egry I, Holland-Moritz D. Levitation methods for structural and dynamical studies of liquids at high temperatures. Eur Phys J-Spec Top, 2011, 196: 131–150

    Article  Google Scholar 

  21. Yang F, Kordel T, Holland-Moritz D, et al. Structural relaxation as seen by quasielastic neutron scattering on viscous Zr-Ti-Cu-Ni-Be droplets. J Phys-Condens Matter, 2011, 23(25): 254207

    Article  ADS  Google Scholar 

  22. Okada J T, Sit P H L, Watanabe Y, et al. Persistence of covalent bonding in liquid silicon probed by inelastic X-ray scattering. Phys Rev Lett, 2012, 108: 067402

    Article  ADS  Google Scholar 

  23. Wang H P, Wei B. Ordered structure formation from disordered atoms within undercooled liquid rhodium. Chem Phys Lett, 2012, 521: 55–58

    Article  ADS  Google Scholar 

  24. Wang H P, Luo B C, Wei B. Molecular dynamics calculation of thermophysical properties for a highly reactive liquid. Phys Rev E, 2008, 78: 041204

    Article  ADS  Google Scholar 

  25. Yang D, Meng G, Zhu C, et al. Synthesis and thermal expansion of copper nanotubes and nanowires with Y- and step-shaped topologies. Small, 2010, 6: 381–385

    Article  Google Scholar 

  26. Wang H P, Yang S J, Wei B. Molecular dynamics prediction of density for metastable liquid noble metals. Chem Phys Lett, 2012, 539: 30–34

    Article  ADS  Google Scholar 

  27. Wang H P, Wei B. Positive excess volume of liquid Fe-Cu alloys resulting from liquid structure change. Phys Lett A, 2010, 374: 4787–4792

    Article  ADS  Google Scholar 

  28. Baskes M I. Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B, 1992, 46: 2727–2742

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BingBo Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Yang, S. & Wei, B. Predicting macroscopic thermal expansion of metastable liquid metals with only one thousand atoms. Sci. China Phys. Mech. Astron. 57, 2235–2241 (2014). https://doi.org/10.1007/s11433-014-5471-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11433-014-5471-8

Keywords

Navigation