Skip to main content
Log in

Microscopical methods for the localization of Na+, K+-ATPase

  • Review
  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Summary

Na+, K+-ATPase plays a central role in the ionic and osmotic homeostasis of cells and in the movements of electrolytes and water across epithelial boundaries. Microscopic localization of the enzyme is, therefore, of crucial importance in establishing the subcellular routes of electrolyte flow across structurally complex and functionally polarized epithelia. Recently developed approaches to the localization of Na+, K+-ATPase are reviewed. These methods rely on different properties of the enzyme and encompass cytochemical localization of the K+-dependent nitrophenylphosphatase component of the enzyme, autoradiographic localization of tritiated ouabain binding sites, and immunocytochemical localization of the holoenzyme and of its catalytic subunit. The rationales for each of these techniques are outlined as are the critieria that have been established to validate each method. The observed localization of Na+, K+-ATPase in various tissues is discussed, particularly as it relates to putative and hypothetical mechanisms that are currently thought to mediate reabsorptive and secretory electrolyte transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akera, T. (1977) Membrane adenosine triphosphatase: a digitalis receptor?Science 198, 569–74.

    Google Scholar 

  • Albers, R. W., Koval, G. J. &Siegel, G. J. (1968) Studies on the interaction of ouabain and other cardioactive steroids with sodium-potassium-activated adenosine triphosphatase.Molec. Pharmac. 4, 324–36.

    Google Scholar 

  • Allen, J. C. &Schwartz, A. (1969) A possible biochemical explanation for the insensitivity of the rat to cardiac glycosides.J. Pharmac. exp. Ther. 168, 42–6.

    Google Scholar 

  • Ashworth, C. T., Luibel, F. J. &Steward, S. C. (1963) The fine structural localization of adenosine triphosphatase in the small intestine, kidney, and liver of the rat.J. Cell Biol. 17, 1–18.

    Google Scholar 

  • Baker, P. F. &Willis, J. S. (1970) Potassium ions and the binding of cardiac glycosides to mammalian cells.Nature, Lond. 226, 521–23.

    Google Scholar 

  • Saker, P. F. &Willis, J. S. (1972) Binding of the cardiac glycoside ouabain to intact cells.J. Physiol., Lond. 224, 441–62.

    Google Scholar 

  • Beeuwkes, R. &Rosen, S. (1975) Renal sodium-potassium adenosine triphosphatase optical localization and x-ray microanalysis.J. Histochem. Cytochem. 23, 828–39.

    Google Scholar 

  • Berridge, M. J. &Oschman, J. L. (1972)Transporting Epithelia. New York: Academic Press.

    Google Scholar 

  • Blitzer, B. L. &Boyer, J. L. (1978) Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.J. clin. Invest. 62, 1104–8.

    Google Scholar 

  • Bonting, S. L. (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. InMembranes and Ion Transport, Vol. I (edited byBittar, E.), pp. 257–363. New York: Wiley.

    Google Scholar 

  • Borgers, M. (1973) The cytochemical application of new potent inhibitors of alkaline phosphatases.J. Histochem. Cytochem. 21, 812–24.

    Google Scholar 

  • Broderson, S. H., Patton, D. L. &Stahl, W. L. (1978) Fine structural localization of potassium-stimulatedp-nitrophenyl phosphatase activity in dendrites of the cerebral cortex.J. Cell Biol. 77, R13–7.

    Google Scholar 

  • Bundgaard, M., Moller, M. &Poulsen, J. H. (1977) Localization of sodium pump sites in cat salivary glands.J. Physiol., Lond. 273, 339–53.

    Google Scholar 

  • Cala, P. M., Cogswell, M. &Mandel, L. J. (1978) Binding of [3H]ouabain to split frog skin.J. gen. Physiol. 71, 347–67.

    Google Scholar 

  • Cereijido, M., Ehrenfeld, J., Meza, I. &Martinez-Palomo, A. (1980) Structural and functional membrane polarity in cultured monolayers of MDCK cells.J. membr. Biol. 52, 147–59.

    Google Scholar 

  • Cereijido, M., Robbins, E. S., Dolan, W. J., Rotunno, C. A. &Sabatini, D. D. (1978) Polarized monolayers formed by epithelial cells on a permeable and translucent support.J. Cell Biol. 77, 853–80.

    Google Scholar 

  • Clausen, T. &Hansen, O. (1974) Ouabain binding and Na+-K+ transport in rat muscle cells and adipocytes.Biochem. Biophys. Acta 345, 387–404.

    Google Scholar 

  • Diamond, J. M. (1979) Osmotic water flow in leaky epithelia.J. membr. Biol. 51, 195–216.

    Google Scholar 

  • Diamond, J. M. &Bossert, W. H. (1967) Standing gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia.J. gen. Physiol. 50, 2061–83.

    Google Scholar 

  • Dibona, D. R. &Mills, J. W. (1979) Distribution of Na+-pump sites in transporting epithelia.Fed. Proc. 38, 134–43.

    Google Scholar 

  • Ernst, S. A. (1972a) Transport adenosine triphosphatase cytochemistry. I. Biochemical characterization of a cytochemical medium for the ultrastructural localization of ouabain-sensitive, potassium-dependent phosphatase activity in the avian salt gland.J. Histochem. Cytochem. 20, 13–22.

    Google Scholar 

  • Ernst, S. A. (1972b) Transport adenosine triphosphatase cytochemistry II. Cytochemical localization of ouabain-sensitive, potassium-dependent phosphatase activity in the secretory epithelium of the avian salt gland.J. Histochem. Cytochem. 20, 23–38.

    Google Scholar 

  • Ernst, S. A. (1975) Transport ATPase cytochemistry: ultrastructural localization of potassium-dependent and potassium-independent phosphatase activities in rat kidney cortex.J. Cell Biol. 66, 586–608.

    Google Scholar 

  • Ernst, S. A., Dodson, W. C. &Karnaky, K. J., Jr (1980a) Structural diversity of occluding junctions in the low-resistance chloride-secreting opercular epithelium of seawater-adapted killifish (Fundulus Leteroclitus).J. Cell Biol. 87, 488–97.

    Google Scholar 

  • Ernst, S. A., Goertemiller, C. C., Jr &Ellis, R. A. (1967) The effect of salt regimens on the development of (Na+−K+)-dependent ATPase activities during growth of salt glands of domestic ducklings.Biochim. Biophys. Acta 135, 682–91.

    Google Scholar 

  • Ernst, S. A. &Mills, J. W. (1977) Basolateral plasma membrane localization of ouabainsensitive sodium transport sites in the secretory epithelium of the avian salt gland.J. Cell Biol. 75, 74–94.

    Google Scholar 

  • Ernst, S. A. &Mills, J. W. (1980) Autoradiographic localization of tritiated ouabain-sensitive sodium pump sites in ion transporting epithelia.J. Histochem. Cytochem. 28, 72–7.

    Google Scholar 

  • Ernst, S. A. &Philpott, C. W. (1970) Preservation of Na-K-activated and Mg-activated adenosine triphosphatase activities of avian salt gland and teleost gill with formaldehyde as fixative.J. Histochem. Cytochem. 18, 251–63.

    Google Scholar 

  • Ernst, S. A., Riddle, C. V. &Karnaky, K. J. Jr (1980b) Relationship between localization of Na+−K+-ATPase, cellular fine structure, and reabsorptive and secretory electrolyte transport. InCurrent Topics in Membranes and Transport, Vol. 13 (edited byBronner, F. andKleinzeller, A.), pp. 355–385. New York: Academic Press.

    Google Scholar 

  • Eveloff, J., Karnaky, K. J. Jr, Silva, P., Epstein, F. H. &Kinter, W. B. (1979) Elasmobranch rectal gland cell. Autoradiographic localization of [3H]ouabain-sensitive Na, K-ATPase in rectal gland of dogfishSqualus acanthias J. Cell Biol. 83, 16–32.

    Google Scholar 

  • Farquhar, M. G. &Palade, G. E. (1966) Adenosine triphosphatase localization in amphibian epidermis.J. Cell Biol. 30, 359–79.

    Google Scholar 

  • Fawcett, D. F. (1962) Physiologically significant specializations of the cell surface.Circulation 26, 1105–32.

    Google Scholar 

  • Field, M. (1978) Some speculations on the coupling between sodium and chloride transport processes in mammalian and teleost intestine. InMembrane Transport Processes, Vol. I (edited byHoffman, J. F.), pp. 277–292. New York: Raven Press.

    Google Scholar 

  • Firth, J. A. (1974) Problems of specificity in the use of a strontium capture technique for the cytochemical localization of ouabain-sensitive, potassium dependent phosphatase in mammalian renal tubules.J. Histochem. Cytochem. 22, 1163–8.

    Google Scholar 

  • Firth, J. A. (1978) Cytochemical approaches to the localization of specific adenosine triphosphatases.Histochem. J. 10, 253–69.

    Google Scholar 

  • Firth, J. A. (1980) Reliability and specificity of membrane adenosine triphosphatase localizations.J. Histochem. Cytochem. 28, 69–71.

    Google Scholar 

  • Firth, J. A. &Marland, B. Y. (1975) The significance of inhibitor-resistant alkaline phosphatase in the cytochemical demonstration of transport adenosine triphosphatase.J. Histochem. Cytochem. 23, 571–4.

    Google Scholar 

  • Fortes, P. A. G. (1977) Anthroylouabain: a specific fluorescent probe for the cardiac glycoside receptor of the Na−K-ATPase.Biochemistry 16, 531–40.

    Google Scholar 

  • Frizzell, R. H., Field, M. &Schultz, S. G. (1979) Sodium-coupled chloride transport by epithelial tissues.Am. J. Physiol. 236, F1–8.

    Google Scholar 

  • Gardner, J. D. &Conlon, T. P. (1972). The effect of sodium and potassium on ouabain binding by human ertythrocytes.J. gen. Physiol. 60, 609–29.

    Google Scholar 

  • Gardner, J. D. &Frantz, C. (1974) Effects of cations on ouabain binding by intact human erythrocytes.J. membr. Biol. 16, 43–64.

    Google Scholar 

  • Glynn, I. M. &Karlish, J. D. (1975) The sodium pump.An. Rev. Physiol. 37, 13–55.

    Google Scholar 

  • Goertemiller, C. C., Jr &Ellis, R. A. (1976) Localization of ouabain-sensitive, potassium-dependent nitrophyenyl phosphatase in the rectal gland of the spiny dogfish,Squalus acanthias.Cell Tiss. Res. 175, 101–12.

    Google Scholar 

  • Gomori, G. (1952)Microscopic Histochemistry, pp. 137–221. Chicago: University of Chicago Press.

    Google Scholar 

  • Guth, L. &Albers, R. W. (1974) Histochemical demonstration of (Na+−K+)-activated adenosine triphosphatase.J. Histochem. Cytochem. 22, 320–26.

    Google Scholar 

  • Handler, J. S., Perkins, F. M. &Johnson, J. P. (1980) Studies of renal cell function using cell culture technique.Am. J. Physiol. 238, F1–9.

    Google Scholar 

  • Haussler, M. R., Nagode, L. A. &Rasmussen, H. (1970) Induction of intestinal brush border alkaline phosphatase by vitamin D and identity with Ca-ATPase.Nature, Lond. 228, 1199–201.

    Google Scholar 

  • Hokin, L. E., Dahl, J. L., Dupree, J. D., Dixon, J. F., Hackney, J. F. &Perdue, J. F. (1973) Studies on the characterization of sodium-potassium transport adenosine triphosphatase. X. Purification of the enzyme from the rectal gland ofSqualus acanthas.J. biol. Chem. 248, 2593–605.

    Google Scholar 

  • Hootman, S. R. &Philpott, C. W. (1978) Rapid isolation of chloride cells from pinfish gill.Anat. Rec. 190, 687–702.

    Google Scholar 

  • Hootman, S. R. &Philpott, C. W. (1979) Ultracytochemical localization of Na+, K-activated ATPase in chloride cells from the gills of a euryhaline teleost.Anat. Rec. 193, 99–130.

    Google Scholar 

  • Hossler, F. E., Sarras, M. P. &Barrnett, R. J. (1978) Ouabain binding during plasma membrane biogenesis in the duck salt gland.J. Cell Sci. 31, 179–97.

    Google Scholar 

  • Jacobsen, N. O. &Jorgensen, P. L. (1969) A quantitative biochemical and histochemical study of the lead method for localization of adenosine triphosphate-hydrolyzing enzymes.J. Histochem. Cytochem. 17, 443–53.

    Google Scholar 

  • Joiner, C. H. &Lauf, P. K. (1978a) The correlation between ouabain binding and potassium pump inhibition in human and sheep erythrocytes.J. Physiol. Lond. 283, 155–75.

    Google Scholar 

  • Joiner, C. H. &Lauf, P. K. (1978b) Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes.J. Physiol. Lond. 283, 177–96.

    Google Scholar 

  • Judah, J. D., Ahmed, K. &McLean, A. E. M. (1962) Ion transport and phosphoproteins of human red cells.Biochim. Biophys. Acta 65, 472–80.

    Google Scholar 

  • Karnaky, K. J., Jr, Kinter, L. B., Kinter, W. B. &Stirling, C. E. (1976) Teleost chloride cell. II. Autoradiographic localization of gill Na+−K+-ATPase in killifishFundulus heteroclitus adapted to low and high salinity environments.J. Cell Biol. 70, 157–77.

    Google Scholar 

  • Koefoed-Johnsen, U. &Ussing, H. H. (1958) The nature of the frog skin potential.Acta physiol. scand. 42, 298–308.

    Google Scholar 

  • Kyte, J. (1972) Properties of the two polypeptides of sodium and potassium-dependent adenosine triphosphatase.J. biol. Chem. 247, 7642–9.

    Google Scholar 

  • Kyte, J. (1974) The reactions of sodium and potassium ion-activated adenosine triphosphatase with specific antibodies.J. biol. Chem. 249, 3652–60.

    Google Scholar 

  • Kyte, J. (1976a) Immunoferritin determination of distribution of (Na++K+) ATPase over the plasma membranes of renal convoluted tubules. I. Distal segment.J. Cell Biol. 68, 287–303.

    Google Scholar 

  • Kyte, J. (1976b) Immunoferritin determination of the distribution of (Na++K+) ATPase over the plasma membranes of renal convoluted tubules. II. Proximal segment.J. Cell Biol. 68, 304–18.

    Google Scholar 

  • Latham, P. S. &Kashgarian, M. (1979) The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membranes.Gastroenterology 76, 988–96.

    Google Scholar 

  • Leuenberger, P. M. &Novikoff, A. B. (1974) Localization of transport adenosine triphosphatase in rat cornea.J. Cell Biol. 60, 721–31.

    Google Scholar 

  • Maetz, J. &Bornancin, M. (1975) Biochemical and biophysical aspects of salt secretion by chloride cells in teleosts.Fortschr. Zool. 23, 322–62.

    Google Scholar 

  • Majack, R. A., Paull, W. K. &Barrett, J. M. (1979) The ultrastructural localization of membrane ATPase in rat thin limbs of the loop of Henle.Histochemistry 63, 23–33.

    Google Scholar 

  • Matsui, H. &Schwartz, A. (1968) Mechanism of cardiac glycoside inhibition of Na+−K+-dependent ATPase from cardiac tissue.Biochim. Biophys. Acta 151, 655–63.

    Google Scholar 

  • Mayahara, H., Fujimoto, K., Ando, T. &Ogawa, K. (1981) A new one-step method for the ultracytochemical localization of ouabain-sensitive, potassium-dependentp-nitrophenylphosphatase activity.Histochemistry 67, 125–38.

    Google Scholar 

  • Mayahara, H. &Ogawa, K. (1980) Ultracytochemical localization of ouabain-sensitive, potassium-dependentp-nitrophenylphosphatase activity in rat kidney.Acta Histochem. Cytochem. 13, 90–102.

    Google Scholar 

  • Mazurkiewicz, J. E., Hossler, F. E. &Barrnett, R. J. (1978) Cytochemical demonstration of sodium-potassium-adenosine triphosphatase by a hemepeptide derivative of ouabain.J. Histochem. Cytochem. 26, 1042–52.

    Google Scholar 

  • Milhorat, T. H., Davis, D. A. &Hammock, M. K. (1975) Localization of ouabain-sensitive Na−K-ATPase in frog, rabbit and rat choroid plexus.Brain Res. 99, 170–4.

    Google Scholar 

  • Mills, J. W. &Dibona, D. R. (1977) On the distribution of Na+-pump sites in the frog skin.J. Cell Biol. 75, 968–76.

    Google Scholar 

  • Mills, J. W. &Dibona, D. R. (1978) Distribution of Na+-pump sites in the frog gallbladder.Nature, Lond. 271, 273–5.

    Google Scholar 

  • Mills, J. W. &Ernst, S. A. (1975) Localization of sodium pump sites in frog urinary bladder.Biochim. Biophys. Acta 375, 268–73.

    Google Scholar 

  • Mills, J. W., Ernst, S. A. &Dibona, D. R. (1977) Localization of Na+-pump sites in frog skin.J. Cell Biol. 73, 88–110.

    Google Scholar 

  • Mills, J. W., Macknight, A. D. C., Dayer, J. &Ausiello, D. A. (1979) Localization of [3H]ouabain-sensitive Na+ pump sites in cultured pig kidney cells.Am. J. Physiol. 236, C157–62.

    Google Scholar 

  • Misfeldt, D. S., Hamamoto, S. T. &Pitelka, D. R. (1976) Transepithelial transport in cell culture.Proc. natn. Adad. Sci., U.S.A. 73, 1212–6.

    Google Scholar 

  • Moczydlowski, E. G. &Fortes, P. A. G. (1980) Kinetics of cardiac glycoside binding to sodium, potassium adenosine triphosphatase studied with a fluorescent derivative of ouabain.Biochemistry 19, 969–77.

    Google Scholar 

  • Novikoff, A. B. (1970) Their phosphatase controversy: love's labors lost.J. Histochem. Cytochem. 18, 916–7.

    Google Scholar 

  • Novikoff, A. B., Drucker, J., Shin, W. &Goldfischer, S. (1961) Further studies of the apparent adenosinetriphosphatase activity of cell membranes in formol-calcium-fixed tissues.J. Histochem. Cytochem. 9, 434–51.

    Google Scholar 

  • Novikoff, A. B., Essner, E., Goldfischer, S. &Heus, M. (1962) Nucleoside-phosphatase activities of cytomembranes. InThe Interpretation of Ultrastructure (edited byHarris, R. J. C.), Vol. I, pp. 149–192. New York: Academic Press.

    Google Scholar 

  • Palva, M., Tervo, T. &Palkama, A. (1978) Distribution of histochemically demonstrable sodium and potassium activated adenosine triphosphatase in the rat lens with comments on methodology.Cell. molec. Biol. 23, 33–41.

    Google Scholar 

  • Pearse, A. G. E. (1972)Histochemistry: Theoretical and Applied. Vol. 2, p. 1280. Edinburgh, London: Churchill-Livingstone.

    Google Scholar 

  • Philpott, C. W. &Copeland, D. E. (1963) Fine structure of chloride cells from three species ofFundulus.J. Cell Biol. 18, 389–404.

    Google Scholar 

  • Quinton, P. M. &Tormey, J. McD. (1976) Localization of Na/K-ATPase sites in the secretory and reabsorptive epithelia of perfused eccrine sweat glands: a question to the role of the enzyme in secretion.J. membr. Biol. 29, 383–99.

    Google Scholar 

  • Quinton, P. M., Wright, E. M. &Tormey, J. McD. (1973) Localization of sodium pumps in the choroid plexus epithelium.J. Cell Biol. 58, 724–30.

    Google Scholar 

  • Rabito, C. A. &Tchao, R. (1980) [3H]Ouabain binding during the monolayer organization and cell cycle in MDCK cells.Am. J. Physiol. 238, C43–8.

    Google Scholar 

  • Rabito, C. A., Tchao, R., Valentich, J. &Leighton, J. (1978) Distribution and characteristics of the occluding junctions in a monolayer of a cell line (MDCK) derived from canine kidney.J. membr. Biol. 43, 351–65.

    Google Scholar 

  • Robinson, J. D. &Flashner, M. S. (1979) The (Na++K+)-activated ATPase: enzymatic and transport properties.Biochim. Biophys. Acta 549, 145–76.

    Google Scholar 

  • Rosen, S. &Beeuwkes, R. (1979) Electron probe studies of Na+−K+-ATPase.Scann. Electron Microsc. 11, 773–8.

    Google Scholar 

  • Rosenthal, A. S., Moses, H. L. &Ganote, C. E. (1970) Interpretation of phosphatase cytochemical data.J. Histochem. Cytochem. 18, 915.

    Google Scholar 

  • Ruoho, A. &Kyte, J. (1974) Photoaffinity labeling of the ouabain-binding site on (Na++K+) adenosine triphosphatase.Proc. natn. Acad. Sci., U.S.A. 71, 2352–6.

    Google Scholar 

  • Sargent, J. R., Thomson, A. J. &Bornancin, M. (1975) Activities and localization of succinic dehydrogenase and Na+/K+-activated adenosine triphosphatase in the gills of fresh water and sea water eels (Anguilla anguilla).Comp. Biochem. Physiol. 51B, 75–9.

    Google Scholar 

  • Schmidt, U. &Dubach, U. C. (1969) Activity of (Na+ K+)-stimulated adenosine-triphosphatase in the rat nephron.Pflügers Arch 306, 219–26.

    Google Scholar 

  • Schwartz, A., Lindenmayer, G. E. &Allen, J. C. (1975) The sodium-potassium adenosine triphosphatase: pharmacological, physiological and biochemical aspects.Pharmac. Rev. 27, 3–134.

    Google Scholar 

  • Schwartz, M., Ernst, S. A., Siegel, G. J. & Agranoff, B. W. (1980b) Immunocytochemical localization of (Na+, K+)-ATPase in the goldfish optic nerve.J. Neurochem. (in press).

  • Schwartz, A., Matsui, H. &Laughter, A. H. (1968) Tritiated digoxin binding to (Na++K+)-activated adenosine triphosphatase: possible allosteric site.Science 159, 323–5.

    Google Scholar 

  • Schwartz, M., Seigel, G. J., Chen, N. &Agranoff, B. W. (1980a) Goldfish brain (Na+, K+)-ATPase: purification of the catalytic polypeptide and production of specific antibodies.J. Neurochem. 34, 1745–52.

    Google Scholar 

  • Sen, A. K. &Post, R. L. (1964) Stoichiometry and localization of adenosine-triphosphate-dependent sodium and potassium transport in the erythrocyte.J. biol. Chem. 239, 345–52.

    Google Scholar 

  • Shaver, J. &Stirling, C. E. (1978) Ouabain binding to renal tubules of the rabbit.J. Cell Biol. 76, 278–92.

    Google Scholar 

  • Silva, P., Solomon, R., Spokes, K. &Epstein, F. H. (1977a) Ouabain inhibition of gill Na−K-ATPase: relationship to active chloride transport.J. exp. Zool. 199, 419–26.

    Google Scholar 

  • Silva, P., Stoff, J., Field, M., Fine, L., Forrest, J. N. &Epstein, F. H. (1977b) Mechanism of active chloride secretion by shark rectal gland: role of Na−K-ATPase in chloride transport.Am. J. Physiol. 233, F298–306.

    Google Scholar 

  • Skou, J. C. (1957) The influence of some cations on a adenosine triphosphatase from peripheral nerves.Biochim. Biophys. Acta 23, 394–401.

    Google Scholar 

  • Specht, S. C. &Robinson, J. D. (1973) Stimulation of the (Na++K+)-dependent adenosine triphosphatase by amino acids and phosphatidylserine: chelation of trace metal inhibitors.Archs Biochem. Biophys. 154, 314–23.

    Google Scholar 

  • Stahl, W. L. &Broderson, S. H. (1976) Localization of Na+, K+-ATPase in brain.Fed. Proc. 35, 1260–5.

    Google Scholar 

  • Stirling, C. E. (1972) Radioautographic localization of sodium pump sites in rabbit intestine.J. Cell Biol. 53, 704–14.

    Google Scholar 

  • Stirling, C. E. (1976) High-resolution autoradiography of3H-ouabain binding in salt transporting epithelia.J. Microsc. 106, 145–57.

    Google Scholar 

  • Tervo, T., Palva, M. &Plakama, A. (1977) Transport adenosine triphosphatase activity in the rat cornea. A comparative histochemical study.Cell Tis. Res. 176, 431–43.

    Google Scholar 

  • Tormey, J. McD. (1966) Significance of the histochemical demonstration of ATPase in epithelia noted for active transport.Nature, Lond. 210, 820–2.

    Google Scholar 

  • Tormey, J. McD. &Diamond, J. M. (1967) The ultrastructural route of fluid transport in rabbit gallbladder.J. gen. Physiol. 50, 2031–60.

    Google Scholar 

  • Wachstein, M. &Meisel, E. (1957) Histochemistry of hepatic phosphatase at a physiologic pH. With special reference to the demonstration of bile canaliculi.Am. J. clin. Pathol. 27, 13–23.

    Google Scholar 

  • Widdicombe, J. H., Basbaum, C. B. &Yee, J. Y. (1979) Localization of Na pumps in the tracheal epithelium of the dog.J. Cell Biol. 82, 380–90.

    Google Scholar 

  • Wood, J. G., Jean, D. H., Whitaker, J. N., McLaughlin, B. J. &Albers, R. W. (1977) Immunocytochemical localization of sodium, potassium activated ATPase in knifefish brain.J. Neurocytol. 6, 571–81.

    Google Scholar 

  • Wright, E. M. (1972) Mechanisms of ion transport across the choroid plexus.J. Physiol., Lond. 226, 545–71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ernst, S.A., Hootman, S.R. Microscopical methods for the localization of Na+, K+-ATPase. Histochem J 13, 397–418 (1981). https://doi.org/10.1007/BF01005056

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01005056

Keywords

Navigation