Skip to main content
Log in

A practical approach to crosslinking

  • Special Issue: Protein-Protein Interactions
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The various aspects of chemical crosslinking are addressed. Crosslinker reactivity, specificity, spacer arm length and solubility characteristics are detailed. Considerations for choosing one of these crosslinkers for a particular application are given as well as reaction conditions and practical tips for use of each category of crosslinkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABH:

azidobenzoyl hydrazide

ANB- NOS:

N-5-azido-2-nitrobenzoyloxysuccinimide

ASIB:

1-(p-azidosalicylamido)-4-(iodoacetamido)butane

ASBA:

4-(p-azidosalicylamido)butylamine

APDP:

N-[4-(p-azidosalicylamido) butyl]-3′(2′-pyridyldithio)propionamide

APG:

p-azidophenyl glyoxal monohydrate

BASED:

bis-[β-(4-azidosalicylamido)ethyl] disulfide

BMH:

bismaleimidohexane

BS3 :

bis(sulfosuccinimidyl) suberate

BSOCOES:

bis[2-(succinimidooxycarbonyloxy)ethyl]sulfone

DCC:

N,N′-dicyclohexylcarbodiimide

DFDNB:

1,5-difluoro-2,4-dinitrobenzene

DMA:

dimethyl adipimidate·2HCl

DMP:

dimethyl pimelimidate·2HCl

DMS:

dimethyl suberimidate·2HCl

DPDPB:

1,4-di-(3′,2′-pyridyldithio)propionamido butane

DMF:

dimethylformamide

DMSO:

dimethylsulfoxide

DSG:

disuccinimidyl glutarate

DSP:

dithiobis(succinimidylpropionate)

DSS:

disuccinimidyl suberate

DST:

disuccinimidyl tartarate

DTSSP:

3,3′-dithiobis (sulfosuccinimidylpropionate)

DTBP:

dimethyl 3,3′-dithiobispropionimidate·2HCl

EDC or EDAC:

1-ethyl-3-(3-dimethylaminopropyl)carbodimide hydrochloride

EDTA:

ethylenediaminetetraacetic acid disodium salt, dihydrate

EGS:

ethylene glycolbis(succinimidylsuccinate)

GMBS:

N-γ-maleimidobutyryloxysuccinimide ester

HSAB:

N-hydroxysuccinimidyl-4-azidobenzoate

HEPES:

4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MBS:

m-maleimidobenzoyl-N-hydroxysuccinimide ester

MES:

4-morpholineethanesulfonic acid

NHS:

N-hydroxysuccinimide

NHS-ASA:

N-hydroxysuccinimidyl-4-azidosalicylic acid

PMFS:

phenylmethylsulfonyl fluoride

PNP-DTP:

p-nitrophenyl-2-diazo-3,3,3-trifluoropropionate

SAED:

sulfosuccinimidyl 2-(7-azido-4-methylcoumarin-3-acetamide) ethyl-1,3′-dithiopropionate

SADP:

N-succinimdyl (4-azidophenyl)1,3′-dithiopropionate

SAND:

sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3′-dithiopropionate

SANPAH:

N-succinimidyl-6(4′-azido-2′-nitrophenyl-amino)hexanoate

SASD:

sulfosuccinimidyl 2-(p-azidosalicylamido)ethyl-1,3′-dithiopropionate

SATA:

N-succinimidyl-S-acetylthioacetate

SDBP:

N-hydroxysuccinimidyl-2,3-dibromopropionate

SIAB:

N-succinimidyl(4-iodoacetyl)aminobenzoate

SMCC:

succinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate

SMPB:

succinimidyl 4-(p-maleimidophenyl) butyrate

SMPT:

4-succinimidyloxycarbonyl-α-methyl-α-(2-pyridyldithio)-toluene

sulfo-BSOCOES:

bis[2-sulfosuccinimidooxycarbonyloxy) ethyl]sulfone

sulfo-DST:

disulfosuccinimidyl tartarate

sulfo-EGS:

ethylene glycolbis(sulfosuccinimidylsuccinate)

sulfo-GMBS:

N-γ-maleimidobutyryloxysulfosuccinimide ester

sulfo-MBS:

m-maleimidobenzoyl-N-hydroxysulfosuccinimide ester

sulfo-SADP:

sulfosuccinimidyl(4-azidophenyldithio)propionate

sulfo-SAMCA:

sulfosuccinimidyl 7-azido-4-methylcoumarin-3-acetate

sulfo-SANPAH:

sulfosuccinimidyl 6-(4′-azido-2′-nitrophenylamino)hexanoate

sulfo-SIAB:

sulfosuccinimidyl(4-iodoacetyl)aminobenzoate

sulfo-SMPB:

sulfo-succinimidyl 4-(p-maleimidophenyl)butyrate

sulfo-SMCC:

sulfosuccinimidyl 4-(N-maleimidomethyl)cyclohexane-1-carboxylate

SPDP:

N-succinimidyl 3-(2-pyridyldithio)propionate

References

  1. Wong SS (1991) Chemistry of Protein Conjugation and Cross-linking. CRC Press Publishers, Boca Raton

    Google Scholar 

  2. Staros JV (1982) Biochemistry 21:3950–3955

    Google Scholar 

  3. Cuatrecasas P & Parikh I (1972) Biochemistry 11(12):2291–2299

    Google Scholar 

  4. Lomant AJ & Fairbanks G (1976) J. Mol. Biol. 104:243–261

    Google Scholar 

  5. Staros JV (1988) Account Chem. Res. 21:435–441

    Google Scholar 

  6. Carlsson J, Drevin H & Axen R (1978) Biochem. J. 173:723–737

    Google Scholar 

  7. Abdella RM, Smith PK & Royer GP (1979) Biochem. Biophys. Res. Commun. 87:734–742

    Google Scholar 

  8. Shin J & Ji TH (1985) J. Biol. Chem. 260:12822–12827

    Google Scholar 

  9. Brinkley MA (1992) Bioconjugate Chem. 3:2–13

    Google Scholar 

  10. Partis MD, Griffiths DG, Roberts GC & Beechey RB (1983) J. Protein Chem. 2(3):263–277

    Google Scholar 

  11. Hashida S, Imagawa M, Inoue S, Ruan K-H & Ishikawa E (1984) J. Appl. Biochem. 6:56–63

    Google Scholar 

  12. Bush DA & Winkler MA (1989) J. Chrom. 489:303–311

    Google Scholar 

  13. Marsh JW (1988) J. Biol. Chem. 263:15993–15999

    Google Scholar 

  14. Blattler WA, Kuenzi BS, Lambert JM & Senter PD (1985) Biochemistry 24:1517–1524

    Google Scholar 

  15. Alagon AC & King TP (1980) Biochemistry 19:4341–4345

    Google Scholar 

  16. Ju R, Lambert JM, Pierce LR & Traut RR (1978) Biochemistry 17:5399–5406

    Google Scholar 

  17. Duncan RJS, Weston PD & Wrigglesworth R (1983) Anal. Biochem. 132:68–73

    Google Scholar 

  18. Carlsson J, Drevin H & Axen R (1978) Biochem. J. 173:723–727

    Google Scholar 

  19. Kumar A & Malhotra S (1992) Nucleosides and Nucleotides 11:1003–1007

    Google Scholar 

  20. Smyth DG, Blumenfeld OO & Konigsberg W (1964) Biochem. J. 91:589

    Google Scholar 

  21. Ishi Y Lehrer SS (1986) Biophys. J. 50:75–80

    Google Scholar 

  22. Yoshitake S, Yamada Y, Ishikawa E & Masseyeff R (1979) Eur. J. Biochem. 101:395–399

    Google Scholar 

  23. Gurd FRN (1967) Meth. Enzymol. 11:532–541

    Google Scholar 

  24. Crestfield AM, Moore S & Stein WH (1963) J. Biol. Chem. 238:622–627

    Google Scholar 

  25. Grabarek Z & Gregely J (1990) Anal. Biochem. 185:181–185

    Google Scholar 

  26. Williams A & Ibrahim IA (1981) J. Am. Chem.Soc. 103:7090–7095

    Google Scholar 

  27. Giles MA, Hudson AQ & Borders CL (1990) Anal. Biochem. 184:244–248

    Google Scholar 

  28. Ji TA & Ji I (1982) Anal. Biochem. 121:286–289

    Google Scholar 

  29. van der Horst GTJ, Mancini GMS, Brossmer R, Rose U & Verheijen FW (1990) J. Biol. Chem. 265:10801–10804

    Google Scholar 

  30. Shephard EG, de Beer FC, von Holt C & Hapgood JP (1988) Anal. Biochem. 168:306–313

    Google Scholar 

  31. Ghinea N, Eskenasy M, Simionescu M & Simionescu N (1989) J. Biol. Chem. 264:4755–4758

    Google Scholar 

  32. Smith JW & Cheresh DA (1990) J. Biol. Chem. 265:2168–2172

    Google Scholar 

  33. Boulay F, Tardif M, Brouchon L & Vignais P (1990) Biochem. 29:11123–11133

    Google Scholar 

  34. Wang NM & Richards FM (1975) J. Biol Chem. 250:6622–6626

    Google Scholar 

  35. Whiteley NM & Berg HC (1974) J. Mol. Biol. 87:541–561

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattson, G., Conklin, E., Desai, S. et al. A practical approach to crosslinking. Mol Biol Rep 17, 167–183 (1993). https://doi.org/10.1007/BF00986726

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00986726

Key words

Navigation