Skip to main content
Log in

Characterization of the tyraminergic system in the central nervous system of the locust,Locusta migratoria migratoides

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Tyramine occurs in the central nervous system (CNS) of the migratory locust,Locusta migratoria migratoides. The distribution of tyramine within the CNS does not parallel that of octopamine. Tyramine is synthesised from tyrosine in the presence of tyrosine decarboxylase. A second decarboxylase in the CNS is active against 5HTP and DOPA. The locust ganglia incorporate tyramine by high- and low-affinity uptake processes that appear to be independent of dopamine and octopamine. Depolarisation of the locust ganglia by high potassium concentration results in calcium-dependent release of incorporated [3H]tyramine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, P., Baker, G. B., and Henwood, R. W., 1980. Tyramine as a neurotransmitter: pros and cons. Pages 307–339,in Mosnaim, A. D., and Wolf, M. E. (eds.), Non-catecholic phenylethylamines, Marcel Dekker Inc., New York.

    Google Scholar 

  2. Boulton, A. A. 1984. Trace amines and the neurosciences: an overview. Pages 13–24,in Boulton, A. A., Baker, G. B., Dewhurst, W. G. and Sandler M. (eds.), Neurobiology of trace amines, Human Press, Clifton, New Jersey.

    Google Scholar 

  3. Juorio, A. V. 1979. Drug-induced changes in the formation, storage and metabolism of tyramine in the mouse. Br. J. Pharmacol. 66:377–378.

    Google Scholar 

  4. Vaccari, A. 1986. High affinity binding of [H]-tyramine in the central nervous system. Br. J. Pharmacol. 89:15–25.

    Google Scholar 

  5. Robertson, H. A., and Juorio, A. V. 1976. Octopamine and some related catecholic amines in invertebrate nervous systems. Int. Rev. Neurobiol. 19:1722–1724.

    Google Scholar 

  6. Juorio, A. V., and Kazakoff, C. W. 1983. The presence of phenylethylamine, p-tyramine, m-tyramine and tryptamine in the ganglia and foot muscle of the garden snail (Helix aspersa). Experientia. 40:549–551.

    Google Scholar 

  7. Juorio, A. V., and Sloley, B. D. 1988. The presence of tyramine and related monoamines in the nerve cord and some other tissues of the lobster,Hommarus americanus. Brain Res. 444:380–382.

    Google Scholar 

  8. Downer, R. G. H. 1979. Trehalose production in isolated fat body of the American cockroach,Periplaneta americana. Comp. Biochem. Physiol. 62C:31–34.

    Google Scholar 

  9. Saudou, F., Amaiky, N., Plassat, J. M., Borelli, E., and Hen, R. 1990. Cloning and characterization of aDrosophila tyramine receptor. EMBO J. 9:3611–3617.

    Google Scholar 

  10. Robb, S., Cheek T. R., Venter, J. C., Midgley, J. M., and Evans, P. D. 1991. The mode of action and pharmacology of a clonedDrosophila phenolamine receptor. Pages 125–126,in Abstract of Neurotox '91: molecular basis of drug and pesticide action, Society of Chemical Industry, London.

    Google Scholar 

  11. McCaman, M. W., McCaman, R. E., and Lees, G. J. 1972. Liquid cation exchange — a basis for sensitive radiometric assays for aromatic amino acid decarboxylases. Anal. Biochem. 45:242–252.

    Google Scholar 

  12. Bailey, B. A., Martin, R. J., and Downer, R. G. H. 1984. A rapid and specific technique for the extraction of tyramine and octopamine from biological tissues for HPLC analysis. Pages 85–90in Boulton, A. A., Baker, G. B., Dewhurst, W. G., and Sandler, M. (eds.), Neurobiology of the trace amines, Humana Press, Clifton, New Jersey.

    Google Scholar 

  13. Downer, R. G. H. 1980. Short-term hypertrehalosemia induced by octopamine in the American cockroach, Periplaneta americana. Neurotox 79: 335–339, Society of Chemical Industry, London.

    Google Scholar 

  14. Vaughan, P. F. T., and Neuhoff, V. 1976. The metabolism of tyrosine, tyramine and 3,4-dihydroxyphenylalanine by cerebral and thoracic ganglia of the locust,Schistocerca gregaria. Brain Res. 117:175–180.

    Google Scholar 

  15. Maxwell, G. D., Tait, J. F., and Hildebrand, J. G. 1978. Regional synthesis of neurotransmitter candidates in the CNS of the mothManduca sexta. Comp. Biochem. Physiol. 61C:109–119.

    Google Scholar 

  16. Livingstone, M. S., and Tempel, B. L., 1983. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila. Nature. 303:67–70.

    Google Scholar 

  17. Yu, P. H. and Sloley, B. D. 1987. Some aspects on L-DOPA decarboxylase and p-tyrosine decarboxylase in the central nervous and peripheral tissue of the American cockroach, Periplaneta americana. Comp. Biochem. Physiol. 87C, 315–319.

    Google Scholar 

  18. Evans, P. D., 1978. Octopamine: a high-affinity uptake mechanism in the nervous system of the cockroach. J. Neurochem. 30:1015–1022.

    Google Scholar 

  19. Aranyi, Z., Hiripi, L., and S-Rozsa, K. 1981. Distribution and metabolism of octopamine in the locust brain as related to metamorphosis. Adv. Physiol. Sci. 22:269–281.

    Google Scholar 

  20. Dyck, L. E. 1984. Neuronal transport of trace amines: an overview. Pages 13–24,in Boulton, A. A., Baker, G. B., Dewhurst, W. G., and Sandler, M. (eds.), Neurobiology of trace amines, Humana Press, Clifton, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Downer, R.G.H., Hiripi, L. & Juhos, S. Characterization of the tyraminergic system in the central nervous system of the locust,Locusta migratoria migratoides . Neurochem Res 18, 1245–1248 (1993). https://doi.org/10.1007/BF00975042

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00975042

Key Words

Navigation