Skip to main content
Log in

Regional brain GABA metabolism and release during hepatic coma produced in rats chronically treated with carbon tetrachloride

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Hepatic coma was induced in rats chronically treated with CCl4, by means of a single injection of ammonium acetate. The activities of glutamate decarboxylase (GAD) and GABA transaminase (GABA-T), as well as the synaptosomal uptake and release of [3H]GABA, were measured in the following brain areas of the comatose rats: cortex, striatum, hypothalamus, hippocampus, midbrain and cerebellum. Hepatic coma was associated with a general decrease of GAD activity, whereas GABA-T activity was diminished only in the hypothalamus, striatum and midbrain. During hepatic coma, the K+-stimulated [3H]GABA release was notably diminished in the striatum and cerebellum, whereas a significant increase was observed in the hippocampus. [3H]GABA uptake increased in most regions after CCl4 treatment, independently of the presence of coma. The results indicate that GABAergic transmission seems to be decreased in most cerebral regions during hepatic coma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoyumpa, A. M., and Schenker, S. 1985. Hepatic Encephalopathy. Pages 3083–3120,in Scott, T. V. (ed.), Internal Medicine, Academic Press, New York.

    Google Scholar 

  2. Zeneroli, M. L., Iuliano, E., Racagni, G., and Baraldi, M. 1982. Metabolism and uptake of γ-aminobutyric acid in galactosamine-induced hepatic encephalopathy in rats. J. Neurochem. 38:1219–1222.

    PubMed  Google Scholar 

  3. Ferenci, P., Covell, D., Schafer, D. F., Waggoner, J. G., Shrager, R., and Jones, E. A. 1983. Metabolism of the inhibitory neurotransmitter γ-aminobutyric acid in a rabbit model of fulminant hepatic failure. Hepatology 3:507–512.

    PubMed  Google Scholar 

  4. Mans, A. M., Biebuyck, J. F., Davis, D. W., Bryan, R. M., and Hawkins, R. A. 1983. Regional cerebral glucose utilization in rats with portacaval anatomosis. J. Neurochem. 40:986–991.

    PubMed  Google Scholar 

  5. Schafer, D. F., Fowler, J. M., and Jones, A. 1981. Colonic bacteria: a source of γ-aminobutyric acid in blood. Proc. Soc. Exp. Biol. Med. 167:301–303.

    PubMed  Google Scholar 

  6. Zaki, A. E. D., Ede, R. J., Davis, M., and Williams, R. L. 1984. Experimental studies of the blood-brain barrier permeability in acute hepatic failure. Hepatology 4:359–363.

    PubMed  Google Scholar 

  7. Baraldi, M. 1982. Experimental hepatic encephalopathy: changes in the binding of γ-aminobutyric acid. Science 216:427–428.

    PubMed  Google Scholar 

  8. Schafer, D. F., and Jones, E. A. 1982. Hepatic encephalopathy and the γ-aminobutyric acid neurotransmitter system. Lancet i:18–20.

    Google Scholar 

  9. Roberts, E. 1984. The γ-aminobutyric acid (GABA) system and hepatic encephalopathy. Hepatology 4:342–345.

    PubMed  Google Scholar 

  10. Schafer, D. F. 1984. Hepatic encephalopathy today. Lancet ii:489–491.

    Google Scholar 

  11. Thompson, J. S., Schafer, D. F., Schafer, G. J., and Hodgson, P. E. 1985. γ-aminobutyric acid plasma levels and brain binding in Eck fistula dogs. J. Surg. Res. 38:143–148.

    PubMed  Google Scholar 

  12. Tossman, U., Eriksson, S., Delin, A., Hagenfeldt, L., Law, D., and Ungerstedt, U. 1983. Brain amino acids measured by intracerebral dialysis in portacaval shunted rats. J. Neurochem. 41:1046–1051.

    PubMed  Google Scholar 

  13. Rojkind, M. 1973. Inhibition of liver fibrosis byl-azetidine-2-carboxilic acid in rats treated with carbon tetrachloride. J. Clin. Inves. 52:2451–2456.

    Google Scholar 

  14. Mans, A. M., Saunders, S. J., Kirsch, R. E., and Biebuyck, J. F. 1979. Correlation of plasma and brain amino acid and putative neurotransmitter alterations during acute hepatic coma in the rat. J. Neurochem. 32:285–292.

    PubMed  Google Scholar 

  15. Giguere, J. F., and Butterworth, R. F. 1984. Amino acids changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy. Neurochem. Res. 9:1309–1321.

    PubMed  Google Scholar 

  16. Heffner, T. G., Hartman, J. A., and Sieden, L. S. 1980. A rapid method for the regional dissection of the rat brain. Pharmac. Biochem. Behav. 13:453–456.

    Google Scholar 

  17. Löscher, W., Bohane, G., Muller, F., and Pagliusi, S. 1985. Improved method for isolating synaptosomes from 11 regions of one rat brain: Electron microscopic and biochemical characterization and use in the study of drug effects on nerve terminal γ-aminobutyric acid in vivo. J. Neurochem. 45:879–889.

    PubMed  Google Scholar 

  18. Tapia, R., and Sitges, M. 1982. Effect of 4-aminopyridine on transmitter release in synaptosomes. Brain Res. 250:291–299.

    PubMed  Google Scholar 

  19. Fricke, U. 1975. Tritosol: a new scintillation cocktail based on Triton-X-100. Anal. Biochem. 63:555–558.

    PubMed  Google Scholar 

  20. Albers, R. W., and Brady, R. D. 1959. The distribution of glutamic acid decarboxylase in the nervous system of the Rhesus monkey. J. Biol. Chem. 234:926–928.

    PubMed  Google Scholar 

  21. Jakoby, S. J. 1959. Soluble γ-aminobutyric-glutamic transaminase from Pseudomonas fluorescens. J. Biol. Chem. 234:932–937.

    PubMed  Google Scholar 

  22. Kun, E. J., and Kearney, E. B. 1974. Ammonia. Pages 1802–1806,in Bergmeyer, H. V., (ed.), Methods of Enzymatic Analysis, Academic Press, New York.

    Google Scholar 

  23. Reitman, S., and Frankel, S. 1957. Determination of serum transaminase. Am. J. Clin. Path. 28:56–64.

    PubMed  Google Scholar 

  24. Malloy, H. T. 1937. The separation of serum pigments giving the direct and indirect Van den Bergh reaction. Biol. Chem. 119:481–489.

    Google Scholar 

  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  26. Rojkind, M., and Kershenobich, D. 1975. Effect of colchicine on collagen, albumin and transferrin synthesis by cirrhotic rat liver slices. Biochim. Biophys. Acta 378:415–423.

    PubMed  Google Scholar 

  27. Ferenci, P., Schafer, D. F., Kleinberger, G., Hoofnagle, J. H., and Jones, E. A. 1983. Serum levels of gamma-aminobutyric acid-like activity in acute and chronic hepatocellular disease. Lancet ii:811–814.

    Google Scholar 

  28. Hindfelt, B., Plum, F., and Duffy, T. E. 1977. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J. Clin. Inves. 59:386–396.

    Google Scholar 

  29. Tapia, R. 1983. γ-aminobutyric acid. Metabolism and biochemistry of synaptic transmission. pages 423–466,in Lajtha, A. (ed.). Handbook of Neurochemistry, vol. 3, Plenum Press, New York and London.

    Google Scholar 

  30. Ferenci, P., Jacobs, R., Pappas, S. C., Schafer, D. F., and Jones, E. A. 1984. Enzymes of cerebral GABA metabolism and synaptosomal GABA uptake in acute liver failure in the rabbit: Evidence for decreased cerebral GABA-transaminase activity. J. Neurochem. 42:1487–1490.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz-Muñoz, M., Tapia, R. Regional brain GABA metabolism and release during hepatic coma produced in rats chronically treated with carbon tetrachloride. Neurochem Res 13, 37–44 (1988). https://doi.org/10.1007/BF00971852

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00971852

Key Words

Navigation