Skip to main content
Log in

Membrane topology of PLP in CNS myelin: Evaluation of models

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Three new models for proteolipid protein (PLP) topology in the myelin membrane have been proposed—the 4-helix Nin and Nout models of Popot (J. Membr. Biol. 120:233–246), and the model of Weimbs and Stoffel (Biochemistry 31:12289–12296). Unlike the earlier models proposed by Laursen (Proc. Natl. Acad. Sci. USA 81:2912–2916), Stoffel (Proc. Natl. Acad. Sci. USA. 81:5012–5016) and Hudson (J. Cell Biol. 109:717–727), the four hydrophobic clusters are all assigned as membrane-spanning domains. ThePopot-N in andWeimbs models, which are similar to theLaursen model, both assign the positively-charged domain, which is deleted from the DM20 transcript of PLP, to the cytoplasmic surface, while thePopot-N out model, similar to theStoffel andHudson models, assigns this sequence to the extracellular surface. Our calculations of membrane surface charge shows that the disposition of this basic domain greatly influences membrane interactions, by shifting the equilibrium myelin period to alkaline pH due to the electrostatic repulsion force at the extracellular apposition. In theLaursen, Popot-N in andWeimbs models, the onset of swelling was calculated to be at lower pH than in theStoffel, Hudson andPopot-N out models, and lower than that observed experimentally with mouse optic nerve myelin. The absolute electron density profile of the myelin membrane that is derived from the x-ray diffraction patterns shows similar density levels at its cytoplasmic and extracellular surfaces. By contrast, the electron density profile calculated from a chemical model that includes lipids plus myelin basic protein (but not PLP) shows a higher density at the cytoplasmic than at the extracellular side. Among the proposed models of PLP, theHudson model has more residues at the extracellular than at the cytoplasmic side, and consequently gives a symmetric electron density distribution at the two membrane surfaces when included with the myelin lipids and MBP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Inouye, H., and Kirschner, D. A. 1988. Membrane interactions in nerve myelin II. Determination of surface charge from biochemical data. Biophys. J. 53:247–260.

    Google Scholar 

  2. Stoffel, W., Giersiefen, H., Hillen, H., Schroeder, W., and Tunggal, B. 1985. Amino-acid sequence of human and bovine brain myelin proteolipid protein (Lipophilin) is completely conserved. Biol. Chem. Hoppe-Seyler 366:627–635.

    Google Scholar 

  3. Nadon, N. L., Duncan, I. D., and Hudson, L. D. 1990. A point mutation in the proteolipid protein gene of the ‘shaking pup’ interrupts oligodendrocyte development. Development 110:529–537.

    Google Scholar 

  4. Lees, M. B., Chao, B. H., Lin, L.-F. H., Samiullah, M., and Laursen, R. A. 1983. Amino acid sequence of bovine white matter proteolipid. Arch. Biochem. Biophys. 226:643–656.

    Google Scholar 

  5. Stoffel, W., Hillen, H., Schroeder, W., and Deutzmann, R. 1983. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe-Seyler's Z. Physiol. Chem. 364:1455–1466.

    Google Scholar 

  6. Schliess, F., and Stoffel, W. 1991. Evolution of the myelin integral membrane proteins of the central nervous system. Biol. Chem. Hoppe-Seyler 372:865–874.

    Google Scholar 

  7. Dautigny, A., Alliel, P. M., D'Auriol, L., Dinh, D. P., Nussbaum, J.-L., Galibert, F., and Jolles, P. 1985 Molecular cloning and nucleotide sequence of a cDNA clone coding for rat brain myelin proteolipid. FEBS Lett. 188:33–36.

    Google Scholar 

  8. Ikenaka, K., Furuichi, T., Iwasaki, Y., Moriguchi, A., Okano, H., and Mikoshiba, K. 1988. Myelin proteolipid protein gene structure and its regulation of expression in normal and Jimpy mutant mice. J. Mol. Biol. 199:587–596.

    Google Scholar 

  9. Inouye, H., and Kirschner, D. A. 1991. Folding and function of the myelin proteins from primary sequence data. J. Neurosci. Res. 28:1–17.

    Google Scholar 

  10. Laursen, R. A., Samiullah, M., and Lees, M. B. 1984. The structure of bovine brain myelin proteolipid and its organization in myelin. Proc. Natl. Acad. Sci. USA 81:2912–2916.

    Google Scholar 

  11. Stoffel, W., Hillen, H., and Giersiefen, H. 1984. Structure and molecular arrangement of proteolipid protein of central nervous system myelin. Proc. Natl. Acad. Sci. USA. 81:5012–5016.

    Google Scholar 

  12. Hudson, L. D., Friedrich, V. L. Jr., Behar, T., Dubois-Dalcq, M., and Lazzarini, R. A. 1989. The initial events in myelin synthesis: orientation of proteolipid protein in the plasma membrane of cultured oligodendrocytes. J. Cell Biol. 109:717–727.

    Google Scholar 

  13. Weimbs, T., and Stoffel, W. 1992. Proteolipid protein (PLP) of CNS myelin: Poisitions of free, disulfide-bounded, and fatty acid thioester-linked cysteine residues and implications for the membrane topology of PLP. Biochemistry 31:12289–12296.

    Google Scholar 

  14. Popot, J.-L., Pham-Dinh D., and Dautigny, A. 1991. Major myelin proteolipid: The 4-alpha-helix topology. J. Membr. Biol. 120:233–246.

    Google Scholar 

  15. Inouye, H., and Kirschner, D. A. 1988. Membrane interactions in nerve myelin I. Determination of surface charge from effects of pH and ionic strength on period. Biophys. J. 53:235–246.

    Google Scholar 

  16. Inouye, H., and Kirschner, D. A. 1989. Orientation of proteolipid protein in myelin: Comparison of models with X-ray diffraction measurements. Dev. Neurosci. 11:81–89.

    Google Scholar 

  17. Lipman, D. J., and Pearson, W. R. 1985. Rapid and sensitive protein similarity scarches. Science 227:1435–1441.

    Google Scholar 

  18. Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

    Google Scholar 

  19. Eisenberg, D., Schwartz, E., Komaromy, M., and Wall, R. 1984. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. J. Mol. Biol. 179:125–142.

    Google Scholar 

  20. Cochary, E. F., Bizzozero, O. A., Sapirstein, V. S., Nolan, C. E., and Fischer, I. 1990. Presence of the plasma membrane proteolipid (plasmolipin) in myelin. J. Neurochem. 55:602–610.

    Google Scholar 

  21. Sapirstein, V. S., Durrie, R., Cherksey, B., Beard, M. E., Flynn, C. J., and Fischer, I. 1992. Isolation and characterization of periaxolemmal and axolemmal enriched membrane fractions from the rat central nervous system. J. Neurosci. Res. 32:593–604.

    Google Scholar 

  22. Roussel, G., Delaunoy, J.-P., Mandel, P., and Nussbaum, J. L. 1978. Ultrastructural localization study of two Wolfgram proteins in rat brain tissue. J. Neurocytol. 7:155–163.

    Google Scholar 

  23. MacNaughton, W., Snook, K. A., Caspi, E., and Franks, N. P. 1985. An X-ray diffraction analysis of oriented lipid multilayers containing basic proteins. Biochim. Biophys. Acta 818:132–148.

    Google Scholar 

  24. Kirschner, D. A., and Ganser, A. L. 1980. Compact myelin exists in the absence of basic protein in the shiverer mutant mouse. Nature 283:207–210.

    Google Scholar 

  25. Kirschner, D. A., Caspar, D. L. D., Schoenborn, B. P., and Nunes, A. C. 1975. Neutron diffraction studies of nerve myelin. Brookhaven Symposia in Biology. III. 68–76.

    Google Scholar 

  26. Blaurock, A. E. 1981. The spaces between membrane bilayers within PNS myelin as characterized by X-ray diffraction. Brain Res. 210:383–387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Special issue dedicated to Dr. Marjorie B. Lees.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inouye, H., Kirschner, D.A. Membrane topology of PLP in CNS myelin: Evaluation of models. Neurochem Res 19, 975–981 (1994). https://doi.org/10.1007/BF00968707

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00968707

Key Words

Navigation