Skip to main content
Log in

The effect of intrahippocampal injection of kainic acid on corticosterone release in rats

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The aim of the present study was to investigate whether the hiopocampus exerts a modulatory effect on the activity of the hypothalamic-pituitary-adrenal (HPA) axis. Kainic acid was stereotaxically injected into the CA1 pyramidal cell layer of the dorsal hippocampus, causing histological and behavioural changes typical of kainic acid toxicity. The CA3 pyramidal cells of the dorsal hippocampus were selectively lesioned. Rats treated with kainic acid were hyperactive, executed clockwise rotatory movements and displayed epileptic seizures. The acute excitatory effect of kainic acid on glutamatergic receptors in the hippocampus resulted in an elevation in plasma corticosterone levels, suggesting a stimulation of HPA axis activity. Direct or indirect stimulation of the CA1 pyramidal cells of the dorsal hippocampus appeared to have caused the increase in corticosterone secretion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamberts, S. W. J., Bons, E., and Zuiderwijk, J. 1986. High concentrations of catecholamines selectively diminish the sensitivity of CRF-stimulated ACTH release by cultured rat pituitary cells to the suppressive effects of dexamethasone. Life Sci. 39:97–102.

    PubMed  Google Scholar 

  2. Weizman, A., Gil-Ad, I., Grupper, D., Tyano, S., and Laron, Z. 1987. The effect of acute and repeated electroconvulsive treatment on plasma β-endorphin, growth hormone, prolactin and cortisol secretion in depressed patients. Psychopharmacol. 93:122–126.

    Google Scholar 

  3. De Villiers, A. S., Russell, V. A., Carstens, M. E. C., Aalbers, C., Gagiano, C. A., Chalton, D. O., and Taljaard, J. J. F. 1987. Noradrenergic function and hypothalamic-pituitary-adrenal axis activity in primary unipolar major depressive disorder. Psychiatry Res. 22:127–140.

    PubMed  Google Scholar 

  4. Sachar, E. F. 1982. Endocrine abnormalities in depression. Pages 191–201,in Paykel, E. S. (Ed.), Handbook of Affective Disorders, Chuchill Livingstone, London.

    Google Scholar 

  5. Keller-Wood, M., Kimura, B., Shinsako, J., and Philips, M. I. 1986. Interaction between CRF and angiotensin-II in control of ACTH and adrenal steroids. Am. J. Physiol. 250:R396-R402.

    PubMed  Google Scholar 

  6. Rivier, C. L., and Plotsky, P. M. 1986. Mediation by corticotropin-releasing factor of adenohypophysial hormone secretion. Ann. Rev. Physiol. 48:475–494.

    Google Scholar 

  7. Beaulieu, S., Di Paolo, T., Cote, J., and Barden, N. 1987. Participation of the central amygdaloid nucleus in the response of adrenocorticotropin secretion to immobilization stress: opposing roles of the noradrenergic and dopaminergic systems Neuroendocrinol. 45:37–46.

    Google Scholar 

  8. Makara, G. B. 1985. Mechanisms by which stressfull stimuli activate the pituitary-adrenal system. Fed. Proc. 44:149–153.

    PubMed  Google Scholar 

  9. Gerlach, J. L., and McEwen, B. 1972. Rat brain binds adrenal steroid hormones: radioautography of hippocampus with corticosterone. Science 175:1133–1136.

    PubMed  Google Scholar 

  10. Magarinos, A. M., Somoza, G., and de Nicola, A. F. 1987. Glucocorticoid negative feedback and glucocorticoid receptors after hippocampectomy in rats. Horm. Metab. Res. 19:105–109.

    PubMed  Google Scholar 

  11. Sapolsky, R. M., Krey, L., and McEwen, B. 1984. Stress downregulates corticosterone receptors in a site specific manner in the brain. Endocrinology 114:287–292.

    PubMed  Google Scholar 

  12. Agrawal, S. G., and Evans, R. H., 1986. The primary afferent depolarizing action of kainate in the rat. Br. J. Pharm. 87:345–355.

    Google Scholar 

  13. Harms, P. G., and Ojeda, S. R. 1974. A rapid and simple procedure for chronic cannulation of the rat jugular vein. J. Appl. Physiol. 36:391–392.

    PubMed  Google Scholar 

  14. Pellegrino, L. J., Pellegrino, S. A., and Cushman, A. J. 1979. A stereotaxic atlas of the rat brain. Plenum press, New York.

    Google Scholar 

  15. Al-Dujaili, E. A. S., Williams, B. C., and Edwards, C. R. W. 1981. The development and application of a direct radioimmunoassay for corticosterone. Steroids 37:157–176.

    PubMed  Google Scholar 

  16. D'Agostino, J., Vaeth, G. F., and Henning, S. J. 1982. Diurnal rhythm of total and free concentrations of serum corticosterone in the rat. Acta Endocrinol. 100:85–90.

    PubMed  Google Scholar 

  17. De Boer, S. F., and van der Gugten, J. 1987. Daily variations in plasma noradrenaline, adrenaline and corticosterone concentrations in the rat. Physiol. Behav. 40:323–328.

    PubMed  Google Scholar 

  18. Munoz, C., and Grossman, S. P. 1980. Some behavioral effects of selective neuronal depletion by kainic acid in the dorsal hippocampus of rats. Physiol. Behav. 25:581–587.

    PubMed  Google Scholar 

  19. Schwarcz, R., Zaczek, R., and Coyle, J. T. 1978. Microinjcction of kainic acid into the rat hippocampus. Eur. J. Pharmacol. 50:209–220.

    PubMed  Google Scholar 

  20. Pohorecky, L. A., Cotler, S., Carbone, J. J. and Roberts, P. 1988. Factors modifying the effect of diazepam on plasma corticosterone levels in rats. Life Sci. 43:2159–67.

    PubMed  Google Scholar 

  21. Meador-Woodruff, J. H., and Greden, J. F. 1988. Effect of psychotropic medications on hypothalamic-pituitary-adrenal regulation. Neurol. Clin. 6(1):225–34.

    PubMed  Google Scholar 

  22. Manev, H., and Pericic, D. 1983. Hypothalamic GABA system and plasma corticosterone in ether stressed rats. Pharmacol. Biochem. Behav. 18(6):847–50.

    PubMed  Google Scholar 

  23. Petraglia, F., Bakalakis, S., Facchinetti, F., Volpe, A., Muller, E. E., and Genazzani, A. R. 1986. Effects of sodium valproate and diazepam on beta-endorphin, beta-lipotropin and cortisol secretion induced by hypoglycemic stress in humans. Neuroendocrinol. 44(3):320–5.

    Google Scholar 

  24. Casady, R. L. and Taylor, A. N. 1976. Effect of electrical stimulation of the hippocampus upon corticosteroid levels in the freely-behaving, non-stressed rat. Neuroendocrinol. 20:68–78.

    Google Scholar 

  25. Feldman, S. 1985. Neural pathways mediating adrenocortical responses. Fed. Proc. 44:169–175.

    PubMed  Google Scholar 

  26. Dunn, J. d., and Orr, S. E. 1984. Differential plasma corticosterone responses to hippocampal stimulation. Exp. Brain Res. 54:1–6.

    PubMed  Google Scholar 

  27. Nadler, J. V., Perry, B. W., Gentry, C., and Cotman, C. W. 1980. Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid. J. Comp. Neurol. 192:333–359.

    PubMed  Google Scholar 

  28. Berger, M. L., Charton, G., and Ben-Ari, Y. 1986. Effect of seizures induced by intra-amygdaloid kainic acid on kainic acid binding sites in rat hippocampus and amygdala. J. Neurochem. 47:720–727.

    PubMed  Google Scholar 

  29. Tremblay, E., Repressa, A., and Ben-Ari, Y. 1985. Autoradiographic localization of kainic acid binding sites in the human hippocampus. Brain Res. 343:378–382.

    PubMed  Google Scholar 

  30. Madison, D. V., and Nicoll, R. A. 1988. Norepinephrine decreases synaptic inhibition in the rat hippocampus. Brain Res. 442:131–138.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daniels, W.M.U., Jaffer, A., Engelbrecht, A.H. et al. The effect of intrahippocampal injection of kainic acid on corticosterone release in rats. Neurochem Res 15, 495–499 (1990). https://doi.org/10.1007/BF00966206

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966206

Key words

Navigation