Skip to main content
Log in

S-Adenosyl-l-homocysteine in brain

Regional concentrations, catabolism, and the effects of methionine sulfoximine

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Administration of methionine sulfoximine (MSO) to rats and mice significantly decreased cerebral levels ofS-adenosyl-l-homocysteine (AdoHcy). Concurrent administration of methionine prevented this decrease and, when methionine was given alone, significantly elevated AdoHcy levels resulted in both species. Regionally, AdoHcy levels varied from 20 nmol/g in rat cerebellum and spinal cord to about 60 nmol/g in hypothalamus and midbrain. MSO decreased AdoHcy in all regions tested except striatum, midbrain, and spinal cord. AdoMet/AdoHcy ratios (methylation index) varied from 0.48 in hypothalamus to 2.4 in cerebellum, and MSO administration decreased these ratios in all regions except hypothalamus. AdoHcy hydrolase activity was lowest in hypothalamus, highest in brainstem and, generally, varied inversely with regional AdoHcy levels. MSO decreased AdoHcy hydrolase activity in all regions except hypothalamus and spinal cord. Cycloleucine administration resulted in significantly decreased levels of mouse brain AdoHcy, whereas the administration of dihydroxyphenylalanine (DOPA) failed to affect AdoHcy levels. It is concluded that (a) cerebral AdoHcy levels are more tightly regulated than are those of AdoMet after MSO administration, (b) slight fluctuations of AdoHcy levels may be important in regulating AdoHcy hydrolase activity and hence AdoHcy catabolism in vivo, (c) the AdoMet/AdoHcy ratio reflects the absolute AdoMet concentration rather than the transmethylation flux, (d) the decreased AdoMet levels in midbrain, cortex, and striatum after MSO with no corresponding decrease in AdoHcy suggest an enhanced AdoMet utilization, hence an increased transmethylation in the MSO preconvulsant state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schatz, R. A., andSellinger, O. Z. 1975. Effect of methionine and methionine sulfoximine on rat brain S-adenosyl-methionine levels.J. Neurochem. 24:63–66.

    Google Scholar 

  2. Schatz, R. A., andSellinger, O. Z. 1975. The elevation of cerebral histamine-N-and catechol-O-methyl transferase activities byl-methionine-d,l-sulfoximine.J. Neurochem. 25:73–78.

    Google Scholar 

  3. DeRobertis, E., Sellinger, O. Z., Rodriguez de Lores Arnaiz, G., Alberici, M., andZieher, L. M. 1967. Nerve endings in the methionine sulfoximine convulsant rats, a neurochemical and ultrastructural study.J. Neurochem. 14:81–89.

    Google Scholar 

  4. Lombardini, J. B., Coulter, A. W., andTalalay, P. 1970. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase action.Molec. Pharmacol. 6:481–499.

    Google Scholar 

  5. Schatz, R. A., Diez Altares, M. C., andSellinger, O. Z. 1973. Effect of methionine (MET) and methionine sulfoximine (MSO) on rat brain S-adenosylmethionine (SAM).Trans. Am. Neurochem. Soc. 4:74.

    Google Scholar 

  6. Zappia, V., Zydek-Cwick, C. R., andSchlenk, F. 1969. The specificity ofS-adenosylmethionine derivatives in methyl transfer reactions.J. Biol. Chem. 244:4499–4509.

    Google Scholar 

  7. Baudry, M., Chast, F., andSchwartz, J. C. 1973. Studies onS-adenosylhomocysteine inhibition of histamine transmethylation in brain.J. Neurochem. 20:13–21.

    Google Scholar 

  8. Coward, J. K., D'Urso-Scott, M. andSweet, W. D. 1972. Inhibition of catechol-O-methyltransferase byS-adenosylhomocysteine andS-adenosylhomocysteine sulfoxide, a potential transition-state analog.Biochem. Pharmacol. 21:1200–1203.

    Google Scholar 

  9. Lin, R. S., andNarasimhachari, N. 1975.N-methylation of 1-methyltryptamines by indolethylamine-N-methyltransferase.Biochem. Pharmacol. 24:1239–1240.

    Google Scholar 

  10. Pegg, A. E. 1971. Studies on inhibitors of mamalian tRNA methylases.FEBS Letters 16:13–16.

    Google Scholar 

  11. Glick, J. M., Ross, S., andLeBoy, P. S. 1975.S-adenosylhomocysteine inhibition of three purified tRNA methyltransferases from rat liver.Nucleic Acids Res. 2:1639–1651.

    Google Scholar 

  12. Deguchi, T., andBarchas, J. 1971. Inhibition of transmethylation of biogenic amines byS-adenosylhomocysteine.J. Biol. Chem. 246:3175–3181.

    Google Scholar 

  13. Reiner, L., Misani, F., andWeiss, P. 1950. Studies on nitrogen trichloride treated prolamines. VI. Suppression of the development of convulsions with methionine.Arch. Biochem. 25:447–454.

    Google Scholar 

  14. Lodin, A., andKolousek, J. 1958. The effect of some amino acids on the neurotoxic action of methionine sulfoximine.Physiol. Bohemosl. 7:87–94.

    Google Scholar 

  15. Ordonez, L. A., andWurtman, R. J. 1973. Methylation of exogenous 3,4-dihydroxyphenylalanine (l-dopa)—Effects on methyl group metabolism.Biochem. Pharmacol. 22:134–137.

    Google Scholar 

  16. Taylor, K. M., andRandall, P. K. 1975. Depletion ofS-adenosyl-l-methionine in mouse brain by antidepressive drugs.J. Pharmacol. Exp. Ther. 194:303–310.

    Google Scholar 

  17. Lombardini, J. B., andTalalay, P. 1973. Effects of inhibitors of adenosine triphosphate:l-methionineS-adenosyltransferase on levels ofS-adenosyl-l-methionine andl-methionine in normal and malignant mammalian tissues.Molec. Pharmacol. 9:542–560.

    Google Scholar 

  18. Zand, R., Sellinger, O. Z., Water, R., andHarris, R. 1974. α-Aminocyclic and bicyclic alkane carboxylic acids: Differential effects on selected amino acids of rat brain cortex.J. Neurochem. 23:1201–1206.

    Google Scholar 

  19. Glowinski, J., andIversen, L. L. 1966. Regional studies of catecholamines in rat brain. I. The disposition of [H3]norepinephrine, [H3] dopamine and [H3] dopa in various regions of the brain.J. Neurochem. 13:655–669.

    Google Scholar 

  20. de la Haba, G., andCantoni, G. L. 1958. The enzymatic synthesis ofS-adenosyl-l-homocysteine from adenosine and homocysteine.J. Biol. Chem. 234:603–608.

    Google Scholar 

  21. Awwad, H. K., andAdelstein, S. J. 1966. A quantitative method for the determination of the specific radioactivity of sulfur-containing amino acids separated by paper chromatography.Anal. Biochem. 16:433–437.

    Google Scholar 

  22. Salvatore, F., Utili, R., Zappia, V., andShapiro, S. K. 1971. Quantitative analysis ofS-adenosylmethionine andS-adenosylhomocysteine in animal tissues.Anal. Biochem. 41:16–28.

    Google Scholar 

  23. Shapiro, S. K., andEhninger, D. J. 1966. Methods for the analysis and preparation of adenosylmethionine and adenosylhomocysteine.Anal. Biochem. 15:323–333.

    Google Scholar 

  24. Finkelstein, J. D., andHarris, B. 1973. Methionine metabolism in mammals: synthesis ofS-adenosylhomocysteine in rat tissues.Arch. Biochem. Biophys. 159:160–165.

    Google Scholar 

  25. Gaull, G. E., andGaitonde, M. K. 1967. A procedure for the quantitative analysis of the sulphur amino acids of rat tissues.Biochem. J. 102:959–975.

    Google Scholar 

  26. Walker, R. D., andDuerre, J. A. 1975.S-adenosylhomocysteine metabolism in various species.Can. J. Biochem. 53:312–319.

    Google Scholar 

  27. Poulton, J. E., andButt, V. S. 1976. Purification and properties ofS-adenosyl-l-homocysteine hydrolase from leaves of spinach beet.Arch. Biochem. Biophys. 172:135–142.

    Google Scholar 

  28. Finkelstein, J. D., andHarris, B. 1975. Methionine metabolism in mammals:S-adenosylhomocysteine hydrolase in rat intestinal mucosa.Arch. Biochem. Biophys. 171:282–286.

    Google Scholar 

  29. Lowry, O. H., Rosebrough, N. J., Farr, A. L., andRandall, R. J. 1951. Protein measurement with Folin phenol reagent.J. Biol. Chem. 193:265–275.

    Google Scholar 

  30. Porcher, W., andHeller, A. 1972. Regional development of catecholamine biosynthesis in rat brain.J. Neurochem. 19:1917–1930.

    Google Scholar 

  31. Duerre, J. A., Miller, C. H., andReams, G. G. 1969. Metabolism ofS-adenosyl-l-homocysteinein vivo by the rat.J. Biol. Chem. 244:107–111.

    Google Scholar 

  32. Thoa, N. B., Weise, V. K., andKopin, I. J. 1972. Effect ofl-dihydroxyphenylalanine on methylation of3H-norepinephrine and3H-histamine.Biochem. Pharmacol. 21:2345–2350.

    Google Scholar 

  33. Chalmers, J. P., Baldessarini, R. J., andWurtman, R. J. 1971. Effects ofl-DOPA on norepinephrine metabolism in the brain.Proc. Natl. Acad. Sci. 68:662–666.

    Google Scholar 

  34. Ghittoni, N. E., Ohlsson, W. G., andSellinger, O. Z. 1970. The effect of methionine on the regional and intracellular disposition of [3H]-methionine sulfoximine in the rat brain.J. Neurochem. 17:1057–1068.

    Google Scholar 

  35. Schatz, R. A., Harris, R., andSellinger, O. Z. 1976. The effect of methionine on uptake distribution and binding of the convulsant methionine sulfoximine in the rat.Neurochem. Res. 1:53–63.

    Google Scholar 

  36. Baldessarini, R. J., andKarobath, M. 1972. Effects ofl-DOPA andl-3-O-methyl-DOPA on uptake of [3H]l-methionine by synaptosomes.Neuropharmacol. 11:715–720.

    Google Scholar 

  37. Ghittoni, N. E., andSellinger, O. Z. 1970. Cerebral methionine and cysteine levels in rats after injection of the convulsant methionine sulfoximine.Pharmacol. Res. Comm. 2:117–120.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by USPHS, NINCDS grant NS-06294.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schatz, R.A., Vunnam, C.R. & Sellinger, O.Z. S-Adenosyl-l-homocysteine in brain. Neurochem Res 2, 27–38 (1977). https://doi.org/10.1007/BF00966019

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966019

Keywords

Navigation