Skip to main content
Log in

Inhibition of Na+, K+-ATPase activity by δ-aminolevulinic acid

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

δ-Aminolaevulinic acid (ALA) has been shown to be toxic to cultured neurons and glia at concentrations as low as 10 μM. In an attempt to elucidate the mechanism of toxicity, the effects of ALA on membrane ATPase activity were investigated. Exposure of neuron cultures to 1 mM ALA for 7 days caused a substantial decrease in both Na+, K+-ATPase and Mg2+-ATPase activities. At lower concentrations, ALA affected only the Na+, K+-component. ALA appeared to act directly, inhibiting Na+, K+-ATPase activity in rat brain cortex membrane preparations at 10 μM Although this effect was slight, it may well represent the mechanism of action of ALA, since ouabain, a potent inhibitor of Na+, K+-ATPase activity, proved to be more toxic to cultured neurons than ALA. Furthermore, cardiac glycoside overdosage causes neurological disturbances which are very similar to those observed in the acute attack of porphyria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sassa, S., andKappas, A. 1981. Genetic, metabolic and biochemical aspects of the porphyrias. Adv. Hum. Genet. 11:121–231.

    PubMed  Google Scholar 

  2. Lee, W. R. 1981. What happens in lead poisoning? J. R. Coll. Physicians Lond. 15:48–54.

    PubMed  Google Scholar 

  3. Cutler, M. G., Moore, M. R., andEwart, F. G. 1979. Effects of δ-aminolaevulinic acid administration on social behaviour in the laboratory mouse. Psychopharmacol. 61:131–135.

    Google Scholar 

  4. Sima, A. A. F., Kennedy, J. C., Blakeslee, D., andRobertson, D. M. 1981. Experiment porphyric neuropathy: A preliminary report. Can. J. Neurol. Sci. 8:105–114.

    PubMed  Google Scholar 

  5. Russell, V. A., Lamm, M. C. L., andTaljaard, J. J. F. 1982. Effects of δ-aminolaevulinic acid porphobilinogen and structurally related amino acids on 2-deoxyglucose uptake in cultured neurons. Neurochem. Res. 7:1009–1022.

    PubMed  Google Scholar 

  6. Nicoll, R. A. 1976. The interaction of porphyrin precursors with GABA receptors in the isolated frog spinal cord. Life Sci. 19:521–526.

    PubMed  Google Scholar 

  7. Müller, W. E., andSnyder, S. H. 1977. δ-Aminolaevulinic acid: Influences on synaptic GABA receptor binding may explain CNS symptoms of porphyria. Ann. Neurol. 2:340–342.

    PubMed  Google Scholar 

  8. Brennan, M. J. W., andCantrill, R. C. 1979. δ-Aminolaevulinic acid is a potent agonist for GABA autoreceptors. Nature 280:514–515.

    PubMed  Google Scholar 

  9. Sokoloff, L., 1981 Circulation and energy metabolism of the brain. Pages 471–495,in Siegel, G. J., Albers, R. W., Agranoff, B. W., andKatzman, R., (eds.), Basic Neurochemistry, Little, Brown and Company, Boston.

    Google Scholar 

  10. Becker, D., Viljoen, D., andKramer, S. 1971. The inhibition of red cell and brain ATPase by δ-aminolaevulinic acid. Biochim. Biophys. Acta 225:26–34.

    PubMed  Google Scholar 

  11. Percy, V. A., Lamm, M. C. L. andTaljaard, J. J. F. 1981. δ-Aminolaevulinic acid uptake, toxicity and effect on [14C] γ-aminobutyric acid uptake into neurons and glia in culture. J. Neurochem. 36:69–76.

    PubMed  Google Scholar 

  12. Rodnight, R., andLavin, B. E. 1966. Enzyme transfer of phosphate from adenosine triphosphate to protein-bound serine residues in cerebral microsomes. Biochem. J. 101:495–501.

    PubMed  Google Scholar 

  13. Shibata, Y., Ohzeki, H., Sato, M., Suzuki, Y., andTakiguchi, H. 1982. Inhibitory effect of prostaglandin A2 on Na+, K+-ATPase activity in synaptic plasma membrane of rat brain in vitro. Int. J. Biochem. 14:347–350.

    PubMed  Google Scholar 

  14. Hems, D. A., andRodnight, R. 1966. Properties of phosphate bound to cerebral microsomes during adenosine-triphosphatase activity. Biochem. J. 101:516–523.

    PubMed  Google Scholar 

  15. Rodnight, R., Hems, D. A., andLavin, B. E. 1966. Phosphate binding by cerebral microsomes in relation to adenosine-triphosphatase activity. Biochem. J. 101:502–515.

    PubMed  Google Scholar 

  16. Ledig, M., Ciesielski-Treska, Cam, Y., Montagnon, D., andMandel, P. 1975. ATPase activity of neuroblastoma cells in culture. J. Neurochem. 25:635–640.

    PubMed  Google Scholar 

  17. Elkouby, A., Ledig, M., andMandel, P. 1982. Effect of hydrocortisone and thyroxine on ATPase activities of neuronal and glial cell lines in culture. Neurochem. Res. 7:387–397.

    PubMed  Google Scholar 

  18. Dichter, H. N., Taddeini, L., Lin, S., andAyala, G. F. 1977. Delta-aminolaevulinic acid. Effect of a porphyrin precursor on an isolated neuronal preparation. Brain Res. 126:189–195.

    PubMed  Google Scholar 

  19. Lieberman, E. M., andNosek, T. M. 1976. The influence of chloride on the ouabainsensitive membrane potential and conductance of crayfish giant axons. Pflügers Archiv. Eur. J. Physiol. 366:195–202.

    Google Scholar 

  20. Cutler, M. G., Moore, M. R., andDick, J. M. 1980. Effects of δ-aminolaevulinic acid on contractile activity of rabbit duodenum. Eur. J. Pharmacol. 64:221–230.

    PubMed  Google Scholar 

  21. Reyneke, L., McCarthy, B. W., Neethling, A. C., Russell, V. A., andTaljaard, J. J. F. 1983. Inhibition of the evoked release of dopamine from rat striatal synaptosomes by δ-aminolaevulinic acid. S. Afr. J. Sci. 79:249–250.

    Google Scholar 

  22. Fischer, H. G., Rudolph, E., andSchmidt, J. 1982. Relation between Na+, K+-ATPase activity and dopamine release from rat striatum slices. Acta Biol. Med. Ger. 41:471–476.

    PubMed  Google Scholar 

  23. McIlwain, H., andBachelard, H. S. (eds.) 1971. Biochemistry and the Central Nervous System. Pages 32–60. Churchill Livingstone, Edinburgh and London.

    Google Scholar 

  24. Moe, G. K., andFarah, A. E. 1975. Digitalis and allied cardiac glycosides. Pages 653–682,in Goodman, L. S., andGilman, A. (eds.), The pharmacological basis of therapeutics, Macmillan Publishing Co., New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Russell, V.A., Lamm, M.C.L. & Taljaard, J.J.F. Inhibition of Na+, K+-ATPase activity by δ-aminolevulinic acid. Neurochem Res 8, 1407–1415 (1983). https://doi.org/10.1007/BF00964997

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964997

Keywords

Navigation