Skip to main content
Log in

Specific rates of substrate oxidation and product formation in autotrophically growingChromatium vinosum cultures

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Kinetics ofChromatium metabolism under autotrophic conditions were studied in batch culture. Description of various over-all metabolic rates in equal dimensions enabled direct comparison of such different processes as electron donor oxidation, storage-polymer synthesis, and growth. In the presence of sulfide, the specific rate of sulfur oxidation is partly depressed. Upon sulfide depletion, the latter rate showed an instantaneous increase of 22%. Simultaneously, glycogen was degraded. These two modifications fully compensate for the absence of sulfide, thus enabling growth to continue withμ max (0.12 h-1). These findings indicate that the potential rate of supply of electrons exceeds the biosynthetic demand for reducing power. The synthesis of glycogen in the presence of sulfide may be regarded overflow metabolism, assuming theμ max is intrinsically limited at 0.12 h-1. An alternative hypothesis is based on the assumption of an ineffective glycogen-synthesis regulation. Conceivably, growth and glycogen synthesis are competing for biosynthetic intermediates, the supply of which is limited by the maximum specific rate of e.g. the Calvin cycle. If so, both growth and glycogen synthesis are performed at submaximal rates. The rate of glycogen synthesis is greatly enhanced by the addition of growth inhibitors, and an increasedμ max value is found in the presence of acetate. These two findings together are consistent with the second hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

N c :

cell nitrogen

TS :

total sugar

PHB :

poly-β-hydroxybutyrate

G :

glycogen

D :

dilution rate

CAP :

chloramphenicol

me RP :

milliequivalent reducing power

References

  • Arnon, D. I., Das, V. S. R., Anderson, J. D.: Metabolism of photosynthetic bacteria. I. Effect of carbon source and hydrogen gas on biosynthetic patterns inChromatium. In: Studies on microalgae and photosynthetic bacteria. Spec. Iss. Plant Cell Physiol. (Jap. Soc. Plant Physiol., ed.), pp. 529–545 (1963)

  • Asami, S., Akazawa, T.: Biosynthetic mechanism of glycolate inChromatium. I. Glycolate pathway. Plant Cell Physiol.16, 631–642 (1975)

    Google Scholar 

  • Dawes, E. A., Senior, P. J.: The role and regulation of energy reserve polymers in micro-organisms. Adv. Microb. Physiol.10, 135–266 (1973)

    PubMed  Google Scholar 

  • Eidels, L., Edelmann, P. L., Preiss, J.: Biosynthesis of bacterial glycogen. VIII. Activation and inhibition of the adenosine diphosphoglucose pyrophosphorylases ofRhodopseudomonas capsulata and ofAgrobacterium tumefaciens. Arch. Biochem. Biophys.140, 60–74 (1970)

    PubMed  Google Scholar 

  • Fairbairn, N. J.: A modified anthrone reagent. Chem. Ind.1953, 86 (1953)

    Google Scholar 

  • Furlong, C. E., Preiss, J.: Biosynthesis of bacterial glycogen. VII. Purification and properties of the adenosine diphosphoglucose pyrophosphorylase ofRhodospirillum rubrum. J. Biol. Chem.244, 2539–2548 (1969)

    PubMed  Google Scholar 

  • Gürgün, V., Kirchner, G., Pfennig, N.: Vergärung von Pyruvat durch sieben Arten phototropher Purpurbakterien. Z. Allg. Mikrobiol.16, 573–586 (1976)

    PubMed  Google Scholar 

  • Hara, F., Akazawa, T., Kojima, K.: Glycogen biosynthesis inChromatium strain D. I. Characterization of glycogen. Plant Cell Physiol.14, 737–745 (1973)

    Google Scholar 

  • Harder, W., Van Dijken, J. P.: Theoretical considerations on the relation between energy production and growth of methane utilizing bacteria. In: Proceedings symposium on microbial production and utilization of gasses (H. G. Schlegel, N. Pfennig, G. Gottschalk, eds.), pp. 403–418. Göttingen: Goeltze 1976

    Google Scholar 

  • Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of the microbial cell. In: Methods in microbiology, Vol. 5B (J. R. Norris, D. W. Ribbons, eds.), pp. 209–344. London: Academic Press 1971

    Google Scholar 

  • Law, J. H., Slepecki, R. A.: Assay of poly-β-hydroxybutyric acid. J. Bacteriol.82, 33–36 (1961)

    PubMed  Google Scholar 

  • Maaløe, O., Kjeldgaard, N. O.: Control of macromolecular synthesis. New York-Amsterdam: Benjamin 1966

    Google Scholar 

  • Oeding, V., Schlegel, H. G.: β-Ketothiolase fromHydrogenomonas eutropha H16 and its significance in the regulation of poly-β-hydroxybutyrate metabolism. Biochem. J.134, 239–248 (1973)

    PubMed  Google Scholar 

  • Palmstierna, H.: Glycogen-like polyglucose inEscherichia coli B during the first hours of growth. Acta Chem. Scand.10, 567–577 (1956)

    Google Scholar 

  • Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol.55, 245–256 (1966)

    Google Scholar 

  • Preiss, J., Kosuge, T.: Regulation of enzyme activity in photosynthetic systems. Ann. Rev. Plant Physiol.21, 433–466 (1970)

    Google Scholar 

  • Richterich, R.: Klinische Chemie. Frankfurt: Akademische Verlagsgesellschaft 1965

    Google Scholar 

  • Schmidt, G. L., Kamen, M. D.: Variable cellular composition ofChromatium in growing cultures. Arch. Mikrobiol.73, 1–18 (1970)

    PubMed  Google Scholar 

  • Schmidt, G. L., Kamen, M. D.: Control of chlorophyll synthesis inChromatium vinosum. Arch. Mikrobiol.76, 51–64 (1971)

    Google Scholar 

  • Senior, P. J., Dawes, E. A.: The regulation of poly-β-hydroxybutyrate metabolism inAzotobacter beijerinckii. Biochem. J.134, 255–238 (1973)

    Google Scholar 

  • Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in green sulphur bacteria. Biochem. J.120, 399–408 (1970)

    PubMed  Google Scholar 

  • Stouthamer, A. H.: Energetic aspects of the growth of microorganisms. Symp. Soc. Gen. Microbiol.27, 285–315 (1977)

    Google Scholar 

  • Technicon Instrument Co.: Autoanalyzer manual. New York: Chauncey 1961

    Google Scholar 

  • Thauer, R. K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anacrobic bacteria. Bacteriol. Rev.41, 100–180 (1977)

    PubMed  Google Scholar 

  • Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells ofChromatium okenii. Antonie van Leuwenhoek J. Microbiol. Serol.30, 225–238 (1964)

    Google Scholar 

  • Van Gemerden, H.: Growth measurements ofChromatium cultures. Arch. Mikrobiol.64, 103–110 (1968a)

    PubMed  Google Scholar 

  • Van Gemerden, H.: Utifization of reducing power in growing cultures ofChromatium. Arch. Mikrobiol.64, 111–117 (1968b)

    PubMed  Google Scholar 

  • Van Gemerden, H.: On the ATP generation byChromatium in darkness. Arch. Mikrobiol.64, 118–124 (1968c)

    PubMed  Google Scholar 

  • Van Gemerden, H.: Coexistence of organisms competing for the same substrate: an example among the purple sulfur bacteria. Microb. Ecol.1, 104–119 (1974)

    Google Scholar 

  • Van Gemerden, H., Jannasch, H. W.: Continuous culture of Thiorhodaceae. Sulfide and sulfur limited growth ofChromatium vinosum. Arch. Mikrobiol.79, 345–353 (1971)

    PubMed  Google Scholar 

  • Wilkinson, J. F.: The problem of energy-storage compounds in bacteria. Exptl. Cell Res. Suppl.7, 111–130 (1959)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Gemerden, H., Beeftink, H.H. Specific rates of substrate oxidation and product formation in autotrophically growingChromatium vinosum cultures. Arch. Microbiol. 119, 135–143 (1978). https://doi.org/10.1007/BF00964264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964264

Key words

Navigation