Skip to main content
Log in

Tissue and regional distribution of cysteic acid decarboxylase

A new assay method

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

A sensitive and rapid assay method for cysteic acid decarboxylase was developed which combined the selectivity of ion exchange resin (a complete retention of the substrate, cysteic acid, and exclusion of the product, taurine) with the speed of a vacuum filtration. The synthesis and purification of35S-labeled cysteic acid were described. The validity of the assay was established by the identification of the reaction product as taurine. With this new method, the decarboxylase activity was measured in discrete regions of bovine brain. Putamen had the highest activity, 172 pmol taurine formed/min/mg protein (100%), followed by caudate nucleus, 90%; cerebral cortex, 82%; hypothalamus, 81%; cerebellar cortex, 79%; cerebellar peduncle, 59%; thalamus, 42%; brain stem, 25%; pons, 10%; and corpus callosum, 3%. The decarboxylase activity in various mouse tissues was also determined as follows: liver, 403; brain, 145; kidney, 143; spinal cord, 59; lung, 21; and spleen, 10 pmol taurine formed/min/mg. No activity could be detected in skeleton muscle and heart, suggesting a different biosynthetic pathway for taurine synthesis in these tissues. The advantages and disadvantages of the new assay method are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aprison, M. H., Davidoff, R. A., andWerman, R. 1970. Glycine: Its metabolic and possible transmitter roles in nervous tissue. Pages 381–397,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 3, Plenum Press, New York.

    Google Scholar 

  2. Curtis, D. R., andJohnston, G. A. R. 1970. Amino acid transmitters. Pages 115–131,in Lajtha, A. (ed.), Handbook of Neurochemistry, Vol. 4, Plenum Press, New York.

    Google Scholar 

  3. Krnjevic, K. 1974. Chemical nature of synaptic transmission in vertebrates. Physiol. Rev. 54:418–540.

    Google Scholar 

  4. Davidson, N. 1976. Neurotransmitter Amino Acids, p. 57, Academic Press, New York.

    Google Scholar 

  5. Barbeau, A., andHuxtable, R. J. 1978. Taurine and Neurological Disorders, pp. 181–305, Raven Press, New York.

    Google Scholar 

  6. Wu, J.-Y., Matsuda, T., andRoberts, E. 1973. Purification and characterization of glutamate decarboxylase from mouse brain. J. Biol. Chem. 248:3029–3034.

    Google Scholar 

  7. Wu, J.-Y., andRoberts, E. 1974. Properties of brainl-glutamate decarboxylase: Inhibition studies. J. Neurochem. 23:759–767.

    PubMed  Google Scholar 

  8. Saito, K., Wu, J.-Y., andRoberts, E. 1974. Immunochemical comparisons of vertebrate glutamic acid decarboxylase. Brain Res. 65:277–285.

    PubMed  Google Scholar 

  9. Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E., andVaughn, J. E. 1974. Immunohistochemical localization of glutamic acid decarboxylase in rat cerebellum. Proc. Natl. Acad. Sci. U.S.A. 71:269–273.

    PubMed  Google Scholar 

  10. McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaughn, J. E., Roberts, E., andWu, J.-Y. 1974. The fine structural localization of glutamate decarboxylase in synaptic terminals of rodent cerebellum. Brain Res. 76:377–391.

    PubMed  Google Scholar 

  11. McLaughlin, B. J., Wood, J. G., Saito, K., Roberts, E., andWu, J.-Y. 1975. The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Res. 85:355–371.

    PubMed  Google Scholar 

  12. McLaughlin, B. J., Barber, R., Saito, K., Roberts, E., andWu, J.-Y. 1975. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164:305–322.

    PubMed  Google Scholar 

  13. Wu, J.-Y. 1976. Purification and properties ofl-glutamate decarboxylase (GAD) and GABA-aminotransferase (GABA-T). Pages 7–155,in Roberts, E., Chase, T., andTower, D. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  14. Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R., andRoberts, E. 1976. Immunocytochemical localization of glutamate decarboxylase in rat substantia nigra. Brain Res. 116:287–298.

    PubMed  Google Scholar 

  15. Wu, J.-Y. 1977. A comparative study ofl-glutamate decarboxylase from brain and heart with purified preparations. J. Neurochem. 28:1359–1367.

    PubMed  Google Scholar 

  16. Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R., andRoberts, E. 1977. Glutamate decarboxylase localization in neurons of the olfactory bulb. Brain Res. 126:1–18.

    PubMed  Google Scholar 

  17. Wu, J.-Y., Chude, O., Wein, J., Roberts, E., Saito, K., andWong, E. 1978. Distribution and tissue specificity of glutamate decarboxylase (EC 4.1.1.15). J. Neurochem. 30:849–857.

    PubMed  Google Scholar 

  18. Brandon, C., Lam, D. M. K. andWu, J.-Y. 1978. Immunocytochemical studies ofl-glutamate decarboxylase in rabbit retina. Society for Neuroscience, Abstract, 4:441.

    Google Scholar 

  19. Jacobsen, J. G., andSmith, L. H., Jr. 1968. Biochemistry and physiology of taurine and taurine derivatives. Physiol. Rev. 48:424–511.

    PubMed  Google Scholar 

  20. Huxtable, R. J. 1978. Regulation of taurine in the heart. Pages 5–17,in Barbeau, A., andHuxtable, R. J. (eds.), Taurine and Neurological Disorders, Raven Press, New York.

    Google Scholar 

  21. Sörbo, B., andHeyman, T. 1957. On the purification of cysteinesulfinic acid decarboxylase and its substrate specificity. Biochim. Biophys. Acta 23:624–627.

    PubMed  Google Scholar 

  22. Lin, Y.-C., Demeio, R. H., andMetrione, R. M. 1971. Purification and properties of rat liver cysteine sulfinate decarboxylase. Biochim. Biophys. Acta 250:558–567.

    PubMed  Google Scholar 

  23. Guion-Rain, M., Portemer, C., andChatagner, F. 1975. Rat liver cysteine sulfinate decarboxylase: Purification, new appraisal of the molecular weight and determination of catalytic properties. Biochim. Biophys. Acta 384:265–276.

    PubMed  Google Scholar 

  24. Hope, D. B. 1955. Pyridoxal phosphate as the co-enzyme of the mammalian decarboxylase forl-cysteine sulphinic andl-cysteic acids. Biochem. J. 59:497–500.

    PubMed  Google Scholar 

  25. Blaschko, H., andHope, D. B. 1954. Enzymic decarboxylation of cysteic and cysteine sulphinic acids. J. Physiol. (London) 126:52P.

    Google Scholar 

  26. Moore, S. 1963. On the determination of cystine as cysteic acid. J. Biol. Chem. 238:235–237.

    Google Scholar 

  27. Chude, O. andWu, J.-Y. 1976. A rapid method for assaying enzymes whose substrates and products differ by charge-application to brainl-glutamate decarboxylase. J. Neurochem. 27:83–86.

    PubMed  Google Scholar 

  28. Wu, J.-Y., Moss, L. G., andChude, O. 1978. Distribution and tissue specificity of 4-aminobutyrate-2-oxoglutarate aminotransferase. Neurochem. Res. 3:207–219.

    PubMed  Google Scholar 

  29. Wu, J.-Y., Saito, K., Wong, E., Roberts, E., andSchousboe, A. 1976. Properties ofl-glutamate decarboxylase from brains of adult and new born mice. J. Neurochem. 27:653–659.

    PubMed  Google Scholar 

  30. Miller, L. P., andMartin, D. L. 1973. An artifact in the radiochemical assay of brain mitochondrial glutamate decarboxylase. Life Sci. 13:1023–1032.

    PubMed  Google Scholar 

  31. Drummond, R. J., andPhillips, A. T. 1974.l-glutamate acid decarboxylase in nonneural tissue of the mouse. J. Neurochem. 23:1207–1213.

    PubMed  Google Scholar 

  32. Pasantes-Morales, H., Loriette, C., andChatagner, F. 1977. Regional and subcellular distribution of taurine-synthesizing enzymes in the rat central nervous system. Neurochem. Res. 2:671–680.

    Google Scholar 

  33. Wu, J.-Y., Chen, M. S., andHuang, W. M. 1978. Purification and immunochemical studies ofl-glutamate decarboxylase and cysteic acid decarboxylase from bovine brain. Society for Neuroscience, Abstract, 4:454.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported in part by grant NS 13224 from the National Institutes of Health, U.S.A., and grant from Huntington's Chorea Foundation in memory of Mrs. Ruth Berman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JY., Moss, L.G. & Chen, MS. Tissue and regional distribution of cysteic acid decarboxylase. Neurochem Res 4, 201–212 (1979). https://doi.org/10.1007/BF00964144

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00964144

Keywords

Navigation