Skip to main content
Log in

Analysis of free amino acids in mammalian brain extracts

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

An optimized method for analysis of free amino acids using a modified lithium-citrate buffer system with a Hitachi L-8800 amino acid analyzer is described. It demonstrates clear advantages over the sodium-citrate buffer system commonly used for the analysis of protein hydrolysates. A sample pretreatment technique for amino acid analysis of brain extracts is also discussed. The focus has been placed on the possibility of quantitative determination of the reduced form of glutathione (GSH) with simultaneous analysis of all other amino acids in brain extracts. The method was validated and calibration coefficient (K GSH) was determined. Examples of chromatographic separation of free amino acids in extracts derived from different parts of the brain are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DTNB:

5,5′-dithiobis-2-nitrobenzoic acid

GSH:

reduced glutathione

GSSG:

oxidized glutathione

References

  1. Halliwell, B. (1996) Antioxidants in human health and disease, Ann. Rev. Nutr., 16, 33–50.

    Article  CAS  Google Scholar 

  2. Perry, T. L., Stedman, D., and Hansen, S. (1968) A versatile lithium buffer elution system for single column automatic amino acid chromatography, J. Chromatogr., 38, 460–466.

    Article  CAS  PubMed  Google Scholar 

  3. Trofimova, L., Ksenofontov, A., Mkrtchyan, G., Graf, A., Baratova, L., and Bunik, V. I. (2016) Quantification of rat brain amino acids: analysis of the data consistency, Curr. Anal. Chem., 11, 1–8.

    Google Scholar 

  4. Ellman, G. L. (1959) Tissue sulfhydryl groups, Arch. Biochem. Biophys., 82, 70–77.

    Article  CAS  PubMed  Google Scholar 

  5. Sedlak, J., and Lindsay, R. H. (1968) Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent, Anal. Biochem., 25, 192–205.

    Article  CAS  PubMed  Google Scholar 

  6. Moore, S., Spackman, D. H., and Stein, W. H. (1958) Automatic recording apparatus for use in the chromatography of amino acids, Fed. Proc., 17, 1107–1115.

    CAS  PubMed  Google Scholar 

  7. Smith, A. M. (1951) The determination of amino-acids colorimetrically by the ninhydrin reaction, Analyst, 76, 623–627.

    Article  CAS  Google Scholar 

  8. Hamilton, P. B. (1963) Ion exchange chromatography of amino acids, Anal. Chem., 35, 2055–2064.

    Article  CAS  Google Scholar 

  9. Tsepkova, P. M., Artiukhov, A. V., Boyko, A. I., Aleshin, V. A., Mkrtchyan, G. V., Zvyagintseva, M. A., Ryabov, S. I., Ksenofontov, A. L., Baratova, L. A., Graf, A. V., and Bunik, V. I. (2017) Thiamine induces long-term changes in amino acid profiles and activities of 2-oxoglutarate and 2-oxoadipate dehydrogenases in rat brain, Biochemistry (Moscow), 82, 723–736.

    Article  CAS  Google Scholar 

  10. Riddles, P. W., Blakeley, R. L., and Zerner, B. (1983) Reassessment of Ellman’s reagent, Methods Enzymol., 91, 49–60.

    Article  CAS  PubMed  Google Scholar 

  11. Bland, J. M., and Altman, D. G. (1986) Statistical methods for assessing agreement between two methods of clinical measurement, Lancet, 1, 307–310.

    Article  CAS  PubMed  Google Scholar 

  12. Bunce, C. (2009) Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies, Am. J. Ophthalmol., 148, 4–6.

    Article  PubMed  Google Scholar 

  13. Giavarina, D. (2015) Understanding bland altman analysis, Biochem. Med., 25, 141–151.

    Article  Google Scholar 

  14. Thompson, J. W. (1926) Glutathione content of normal animals, J. Biol. Chem., 70, 793–800.

    CAS  Google Scholar 

  15. Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples, Methods Enzymol., 113, 548–555.

    Article  CAS  PubMed  Google Scholar 

  16. Reed, D. J., Babson, J. R., Beatty, P. W., Brodie, A. E., Ellis, W. W., and Potter, D. W. (1980) High-performance liquid chromatography analysis of nanomole levels of glutathione, glutathione disulfide, and related thiols and disulfides, Anal. Biochem., 106, 55–62.

    Article  CAS  PubMed  Google Scholar 

  17. Newton, G. L., Dorian, R., and Fahey, R. C. (1981) Analysis of biological thiols: derivatization with mono-bromobimane and separation by reverse-phase high-performance liquid chromatography, Anal. Biochem., 114, 383–387.

    Article  CAS  PubMed  Google Scholar 

  18. Rahman, I., Kode, A., and Biswas, S. K. (2006) Assay for quantitative determination of glutathione and glutathione disulfide levels using enzymatic recycling method, Nat. Protoc., 1, 3159–3165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. L. Ksenofontov or L. A. Baratova.

Additional information

Original Russian Text © A. L. Ksenofontov, A. I. Boyko, G. V. Mkrtchyan, V. N. Tashlitsky, A. V. Timofeeva, A. V. Graf, V. I. Bunik, L. A. Baratova, 2017, published in Biokhimiya, 2017, Vol. 82, No. 10, pp. 1538-1549.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ksenofontov, A.L., Boyko, A.I., Mkrtchyan, G.V. et al. Analysis of free amino acids in mammalian brain extracts. Biochemistry Moscow 82, 1183–1192 (2017). https://doi.org/10.1134/S000629791710011X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S000629791710011X

Keywords

Navigation