Skip to main content
Log in

Gravity flow of coarse cohesionless granular materials in conical hoppers

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Abstract

This paper is concerned with the flow of cohesionless granular materials in conical hoppers. The granules are considered to be coarse such that the effects of interstitial fluid can be neglected. Two analytical approaches based upon the method of integral relations are presented. In the first the detailed variations of shear and normal stresses over the cross-section of the hopper are considered. The second is a very simple analysis which makes use of a mean normal stress averaged over the cross-section. The two analyses yield predictions for the flow rate which are almost identical. After the inclusion of an empirical correction factor to account for non-uniform exit velocity profiles and bulk density reductions near the outlet, the flow rate predictions and their variations with internal and wall friction angles and with hopper wall slope are found to agree well with experimental measurements.

Résumé

Cet article traite de l'écoulement de matières granuleuses sans cohésion dans des trémies coniques. On admet que les granules sont assez gros pour que les effets dûs au fluide intersistiel restent négligeables. 2 méthodes d'approche analytiques basées sur la méthode des relations intégrales sont présentées. La première considère en détail la distribution des contraintes normales et de cisaillement sur la section de la trémie. La seconde méthode est une simple analyse basée sur la moyenne des contraintes normales sur cette section. Les 2 analyses fournissent des prédictions presque identiques sur le taux d'écoulement. En introduisant un facteur de correction empirique pour tenir compte de la non-uniformité de profils de vitesses d'écoulement ainsi que de la réduction de densité à la sortie, l'analyse fournit des taux d'écoulement et leurs variations avec la friction interne, les angles de friction aux parois et l'inclinaison des parois de la trémie. Les résultants obtenus sont en accord avec des mesures expérimentales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Hagen,Druck und Bewegung des Trockenen Sandes, Berliner Monatsberichte Akad. d. Wiss., S 35–S 42 (1852).

  2. W. E. Deming and A. L. Mehring,The gravitational flow of fertilizers and other comminuted solids, Industrial & Eng. Chemistry,21, 661–665 (1929).

    Google Scholar 

  3. R. L. Brown and J. C. Richards,Principles of powder mechanics, 1st ed., Pergamon Press, Oxford (1970).

    Google Scholar 

  4. W. A. Beverloo, H. A. Leniger, and J. van de Velde,The flow of granular solids through orifices, Chemical Eng. Sci.15, 260–269 (1961).

    Google Scholar 

  5. H. E. Rose and T. Tanaka,Rate of discharge of granular materials from bins and hoppers, Engineer,208 (23 Oct.) 465–469 (1959).

    Google Scholar 

  6. H. E. Bosley, C. Schofield, and C. A. Shook,An experimental study of granule discharge from model hoppers, Transactions Inst. Chemical Eng.,47, T 147-T 158 (1969).

    Google Scholar 

  7. R. L. Brown,Minimum energy theorem for flow of dry granular materials through apertures, Nature, London191, 458–461 (1961).

    Google Scholar 

  8. J. R. Johanson,Method of calculating rate of discharge from hoppers and bins, Transactions Soc. Mining Eng.232, 69–80 (1965).

    Google Scholar 

  9. S. B. Savage,The mass flow of granular materials derived from coupled velocity-stress fields, British J. Appl. Phys.16, 1885–1888 (1965).

    Google Scholar 

  10. J. F. Davidson and R. M. Nedderman,The hour-glass theory of hopper flow, Transactions Inst. Chemical Eng.51, 29–35 (1973).

    Google Scholar 

  11. W. N. Sullivan,Heat transfer fo flowing granular media, Ph. D. Thesis, California Institute of Technology, Pasadena, Calif. (1972).

    Google Scholar 

  12. S. B. Savage,Gravity flow of a cohesionless bulk solid in a converging conical channel, Int. J. Mechanical Sci.9, 651–659 (1967).

    Google Scholar 

  13. S. B. Savage,Some considerations of flow of cohesionless granular solids, Ph. D. Thesis, McGill University, Montreal (1967).

    Google Scholar 

  14. J. C. Williams,The rate of discharge of coarse granular materials from conical mass flow hoppers, Chemical Eng. Sci.32, 247–255 (1977).

    Google Scholar 

  15. Z. Mroz and C. Szymanski,Gravity flow of a granular material in a converging channel, Arch. Mechanics23, 897–917 (1971).

    Google Scholar 

  16. B. J. Crewdson, A. L. Ormond, and R. M. Nedderman,Air-impeded discharge of fine particles from a hopper, Powder Technology,16, 197–207 (1977).

    Google Scholar 

  17. C. Brennen and J. C. Pearce,Granular material flow in two-dimensional hoppers, J. Appl. Mech.45, 43–50 (1978).

    Google Scholar 

  18. T. V. Nguyen, C. Brennen, and R. H. Sabersky,Gravity flow of granular materials in conical hoppers, J. Appl. Mech.46, 529–535 (1979).

    Google Scholar 

  19. R. M. Laforge and B. K. Boruff,Profiling flow of particles through hopper openings, Industrial & Eng. Chemistry56, No. 2, 42–45 (1964).

    Google Scholar 

  20. S. B. Savage and M. Sayed,Gravity flow of cohesionless granular materials in wedge-shaped hoppers, Mechanics applied to the transport of bulk materials, ASMEAMD-31 (1979).

  21. A. W. Jenike and R. T. Shield,On the plastic flow of Coulomb solids beyond original failure, J. Appl. Mech.26, 599–602 (1959).

    Google Scholar 

  22. A. J. M. Spencer,A theory of kinematics of ideal soil under plane strain conditions, J. Mech. Phys. Solids12, 337–351 (1964).

    Google Scholar 

  23. G. Mandl and R. Fernández-Luque,Fully developed plastic shear flow of granular materials, Geotechnique20, 277–307 (1970).

    Google Scholar 

  24. W. G. Pariseau,Experimental observations of velocity discountinuties in flowing sand, The effects of voids on material deformation, Am. Soc. Mech. Eng.,AMD-16, 47–70 (1976).

    Google Scholar 

  25. J. Lee, S. C. Cowin, and J. S. Templeton,An experimental study of flow through hoppers, Transactions Soc. Rheology18, 247–269 (1974).

    Google Scholar 

  26. A. Drescher, T. W. Cousens, and P. L. Bransby,Kinematics of the mass flow of granular material through a plane hopper, Geotechnique28, 27–42 (1978).

    Google Scholar 

  27. P. L. Bransby and P. M. Blair-Fish,Wall stresses in mass flow bunkers, Chem. Eng. Sci.29, 1061–1074 (1974).

    Google Scholar 

  28. M. G. Perry and M. F. Handley,The dynamic arch in free flowing granular material discharging from a model hopper, Transactions Inst. Chem. Eng.45, T367-T371 (1967).

    Google Scholar 

  29. D. J. van Zuilichem, N. D. van Egmond, and J. G. de Swart,Density behaviour of flowing granular material, Powder Tech.10, 161–169 (1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

On leave at the Department of Applied Mathematics and Theoretical Physics, University of Cambridge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Savage, S.B., Sayed, M. Gravity flow of coarse cohesionless granular materials in conical hoppers. Z. angew. Math. Phys. 32, 125–143 (1981). https://doi.org/10.1007/BF00946743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00946743

Keywords

Navigation