Skip to main content
Log in

Approximations in thermal explosion theory and the nature of the degenerate critical point

  • Original Papers
  • Published:
Zeitschrift für angewandte Mathematik und Physik ZAMP Aims and scope Submit manuscript

Summary

In studies of thermal explosion the Frank-Kamenetskii approximation sets exp(−E/RT)=exp(−E/RT 0)exp (θ/(1+βθ))≅exp(−E/RT 0)expθ, whereβ=RT 0/E i.e. it assumesβ≈0. When this approximation is not made, it is known that criticality vanishes forβ greater than a certain valueβ *, say. This may occur whether the Arrhenius form is used or some suitable approximation to it; many authors have proposed approximations involving the maximum dimensionless temperature in the reactant. The nature of the degeneracy near the valueβ * is examined for such approximations in general, some approximations are considered and the results compared.

Résumé

Dans les études de la théorie de l'explosion thermale l'approximation de Frank-Kamenetskii pose exp(−E/RT)=exp(−E/RT 0)exp(θ/(1+θ)]≈exp(−E/RT 0) expθ, avecβ=RT 0/E, c'est à dire on admetβ≈0.

On sait que, en dehors de cette approximation, la limite critique disparaît lorsqueβ dépasse une certaine valeur dénomméeβ *. Ceci peut se produire soit en utilisant la forme d'Arrhenius ou une approximation adéquate.

Plusieurs auteurs ont proposé des approximations utilisant la température maximum non-dimensionelle du réactif. Dans la présente étude on examine d'une façon générale le caractère de la dégénérescence aux alentours de la valeurβ * pour ce genre d'approximations. Ensuite on considère quelques approximations particulières et les résultats sont comparés.

Zusammenfassung

In Studien von thermischen Explosionen setzt man in der Näherung von Frank-Kamenetskii exp(−E/RT)=exp(−E/RT 0)exp(θ/(1+βθ))≅exp(−E/RT 0) expθ), wobeiβ=RT 0/E ist, d.h. man nimmtβ≈0 an. Wenn diese Näherung nicht benützt wird, so weiß man, daß die Kritikalität verschwindet wennβ einen gewissen Wertβ * überschreitet. Dies findet man mit Benützung der Formel von Arrhenius oder mit einer Näherung dazu; viele Autoren haben Näherungen vorgeschlagen mit Verwendung der maximalen dimensionslosen Temperatur im Reaktionsgemisch. Es wird für solche Näherungen die Natur der Entartung der Lösung in der Umgebung vonβ * untersucht; die Resultate für verschiedene Näherungen werden verglichen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Gray and M. E. Sherrington,Specialist periodical reports: Gas kinetics and energy transfer. Vol. 2, 331–383. Chemical Soc. London 1977.

    Google Scholar 

  2. T. Boddington, P. Gray, FRS., and C. Robinson,Thermal explosions and the disappearance of criticality at small activation energies: Exact results for the slab. Proc. Roy. Soc. A368, 441–461 (1979).

    Google Scholar 

  3. C. Willis, R. A. Back, and J. G. Purdon, National Research Council of Canada Report (1977).

  4. W. Kordylewski,Critical parameters of thermal explosion. Combust. Flame34, 109–117 (1979).

    Google Scholar 

  5. W. Kordylewski,Degenerate critical points of thermal explosion. Komunikat I-20/K-020/78, Technical University of Wrocław (1978).

  6. T. Takeno,Ignition criterion by thermal explosion theory. Combust. Flame29, 209–211 (1977).

    Google Scholar 

  7. N. W. Bazley and G. C. Wake,The disappearance of criticality in the theory of thermal ignition. Z. angew. Math. Phys.28, 971–975 (1978).

    Google Scholar 

  8. W. Gill, A. B. Donaldson, and A. R. Shouman,The Frank-Kamenetskii problem revisited. Part 1. Boundary conditions of first kind. Combust. Flame36, 217–232 (1979).

    Google Scholar 

  9. D. D. Joseph,Non-linear heat generation and stability of the temperature distribution in conducting solids. Int. J. Heat Mass Transfer8, 281–288 (1965).

    Google Scholar 

  10. W. H. H. Banks and P. G. Drazin,Perturbation methods in boundary-layer theory. J. Fluid Mech.58, 763–775 (1973).

    Google Scholar 

  11. M. B. Zaturska,An elementary theory for the prediction of critical conditions for thermal explosion. Combust. Flame32, 277–284 (1978).

    Google Scholar 

  12. M. B. Zaturska,Prediction of criticality for multidimensional explosives. Combust. Sci. Techn.23, 231–242 (1980).

    Google Scholar 

  13. M. Abramowitz and I. A. Stegun, Handbook of mathematical functions. Dover, New York 1965.

    Google Scholar 

  14. W. Gill, A. B. Donaldson, and A. R. Shouman, Private Communication relating to Ref. [8].

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaturska, M.B. Approximations in thermal explosion theory and the nature of the degenerate critical point. Z. angew. Math. Phys. 33, 379–391 (1982). https://doi.org/10.1007/BF00944446

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00944446

Keywords

Navigation