Skip to main content
Log in

Spatial orthogonality of the principal components computed from coregionalized variables

  • Articles
  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

Within the frame of the linear model of coregionalization, this paper sets up equations relating the variogram matrix of the principal components extracted from the variance-covariance matrix to the diagonal variogram matrices of the regionalized factors. The spatial orthogonality of the principal components is investigated in three situations: the intrinsic correlation, two basic structures with independent nugget components, three basic structures with independent nugget components and uncorrelated subsets of variables. Two examples point out that the correlation between the principal components may be nonnegligible at short distances, especially if the correlation structure changes according to the spatial scale considered. For one of the two case studies, an orthogonal varimax rotation of the first principal components is found to greatly reduce the spatial correlation between some of them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borgman, L. E., and Frahme, R. B., 1976, A Case Study: Multivariate Properties of Bentonite in Northeastern Wyoming,in M. Guarascio et al. (Eds.), Advanced Geostatistics in the Mining Industry: Reidel, Dordrecht, p. 381–390.

    Google Scholar 

  • Bourgault, G. and Marcotte, D., 1991, Multivariate Variogram and Its Application to the Linear Model of Coregionalization: Math. Geol., v. 23, no. 7, p. 899–928.

    Google Scholar 

  • Bryan, R. C., 1980, Enhanced ore Estimation Using Multifactor Cokriging, Ph.D. thesis, Colorado School of Mines, 82 p.

  • Cooley, W. W., and Lohnes, P. R., 1971, Multivariate Data Analysis: John Wiley and Sons, New York, 364 p.

    Google Scholar 

  • Davis, B. M., and Greenes, K. A., 1983, Estimation Using Spatially Distributed Multivariate Data: An Example with Coal Quality: Math. Geol., v. 15, no. 2, p. 287–300.

    Google Scholar 

  • Davis, M. W., 1987, Production of Conditional Simulations via the LU Triangular Decomposition of the Covariance Matrix: Math. Geol., v. 19, no. 2, p. 91–98.

    Google Scholar 

  • Goovaerts, P., 1991, Etude des Relations entre Propriétés Physico-chimiques du Sol par la Géostatistique Multivariable,in Ch. de Fouquet (Ed.), Compte-rendu des Journées de Géostatistique, 6–7 Juin 1991, Fontainebleau: Cahiers de Géostatistique, Fascicule 1, ENSMP, p. 247–261.

  • Goovaerts, P., 1992, Factorial Kriging Analysis: A Useful Tool for Exploring the Structure of Multivariate Spatial Soil Information: J. Soil Sci., v. 43, no. 4, p. 597–619.

    Google Scholar 

  • Graybill, F. A., 1983, Matrices with Applications in Statistics (2nd ed.): Wadsworth Publishing Company, Belmont, California, 461 p.

    Google Scholar 

  • Journel, A. G., and Huijbregts, C. J., 1978, Mining Geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Kaiser, H. F., 1958, The Varimax Criterion for Analytic Rotation in Factor Analysis: Psychometrika, v. 23, p. 187–200.

    Google Scholar 

  • Marcotte, D., 1989, Multivariate Analysis and Variography Used to Enhance Anomalous Response for Lake Sediments in the Manicouagan Area, Quebec,in F. D. Agterberg and G. F. Bonhamcarter (Eds.), Statistical Application in the Earth Sciences: Geological Survey of Canada, Paper 89-9, p. 349–356.

  • Matheron, G., 1965, Les Variables Régionalisées et leur Estimation: Masson, Paris, 305 p.

    Google Scholar 

  • Matheron, G., 1982, Pour une Analyse Krigeante des Données Régionalisées, N-732: Centre de Géostatistique et de Morphologie Mathématique, Fontainebleau, 22 p.

    Google Scholar 

  • Myers, D. E, 1988, Multivariate Geostatistical Analysis for Environmental Monitoring: Sciences de la Terre, v. 27, p. 411–427.

    Google Scholar 

  • Oliver, M. A., and Webster, R., 1989, A Geostatistical Basis for Spatial Weighting in Multivariate Classification: Math. Geol., v. 21, no. 1, p. 15–35.

    Google Scholar 

  • Sandjivy, L., 1984, The Factorial Kriging Analysis of Regionalized Data. Its Application to Geochemical Prospecting,in G. Verly et al. (Eds.), Geostatistics for Natural Resources Characterization: Reidel, Dordrecht, p. 559–571.

    Google Scholar 

  • Suro-Pérez, V., and Journel, A. G., 1991, Indicator Principal Component Kriging: Math. Geol., v. 23, no. 5, p. 759–788.

    Google Scholar 

  • Wackernagel, H., 1985, L'Inférence d'un Modèle Linéaire en Géostatistique Multivariable, Thèse, Ecole Nationale Supérieure des Mines de Paris, 100 p.

  • Wackernagel, H., 1988, Geostatistical Techniques for Interpreting Multivariate Spatial Information,in C. F. Chung et al. (Eds.), Quantitative Analysis of Mineral Energy Resources: Reidel, Dordrecht, p. 393–409.

    Google Scholar 

  • Wackernagel, H., Petitgas, P., and Touffait, Y., 1989, Overview of Methods for Coregionalization Analysis,in M. Armstrong (Ed.), Geostatistics, Vol. 1: Quantitative Geology and Geostatistics: Kluwer Academic Publishers, p. 409–420.

  • Yaglom, A. M., 1987, Correlation Theory of Stationary and Related Random Functions I: Basic Results: Springer-Verlag, New York, 526 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goovaerts, P. Spatial orthogonality of the principal components computed from coregionalized variables. Math Geol 25, 281–302 (1993). https://doi.org/10.1007/BF00901420

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00901420

Key words

Navigation