Skip to main content
Log in

Theory of collision effects on atomic and molecular line shapes

  • Invited Paper
  • Published:
Applied physics Aims and scope Submit manuscript

Abstract

A review of recent developments in the theory of the effects of binary collisions on the spectral profiles associated with atomic and molecular systems is presented. To consistently account for collisional perturbations of both the internal energy levels and the velocity of active (emitting or absorbing) atoms or molecules, one must use a theory in which the center-of-mass motion of the active atoms has been quantized. Following this procedure general equations for absorption or emission line shapes are obtained. The line shapes may exhibit narrowing or broadening with increasing perturber pressure, depending upon the nature of the collision interaction. The physical significance of the collision mechanisms giving rise to such behavior is discussed, as is the experimental evidence in support of the theory. Various applications of the theory are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Breene, Jr.:The Shift and Shape of Spectral Lines (Pergamon Press, Inc. New York 1961)

    Google Scholar 

  2. M. Baranger: InAtomic and Molecular Processes, ed. by D. R. Bates (Academic Press, New York 1962) Chapter 13

    Google Scholar 

  3. H.R. Griem: InPlasma Spectroscopy (McGraw Hill Book Co., New York 1964) Chapter 4

    Google Scholar 

  4. J.T. Jeffries:Spectral Line Formation (Blaisdell Pub. Co., Waltham, Mass 1968)

    Google Scholar 

  5. I.I. Sobelman:Introduction to the Theory of Atomic Spectra (Pergamon Press, New York 1972)

    Google Scholar 

  6. S.Y. Chen, M. Takeo: Rev. Mod. Phys.29, 20 (1957)

    Article  ADS  Google Scholar 

  7. R.G. Breene, Jr.: Rev. Mod. Phys.29, 94 (1957)

    Article  ADS  Google Scholar 

  8. J. Cooper: Rev. Mod. Phys.39, 167 (1967) References [9–22] have semi-classical treatments of collisions and neglect velocity-changing effects.

    Article  ADS  Google Scholar 

  9. E. Lindholm: Arkiv Mat. Astron. Fysik32 A, 1 (1945)

    Google Scholar 

  10. H.M. Foley: Phys. Rev.69, 616 (1946)

    Article  ADS  Google Scholar 

  11. P.W. Anderson: Phys. Rev.76, 647 (1949)

    Article  ADS  Google Scholar 

  12. C.J. Tsao, B. Curnette: J. Quant. Spectro. Radiative Transfer2, 41 (1962)

    Article  Google Scholar 

  13. F.W. Byron, Jr., H.M. Foley: Phys. Rev.134, A 625 (1964)

    Article  ADS  Google Scholar 

  14. M.I. D'Yakonov, V.I. Perel: Soviet Phys. JETP21, 227 (1965)

    ADS  Google Scholar 

  15. A. Omont: J. Phys. Radium26, 26 (1965)

    Google Scholar 

  16. A.P. Kazantsev: Soviet Phys. JETP24, 1183 (1967)

    ADS  Google Scholar 

  17. A. Omont, J. Meunier: Phys. Rev.169, 92 (1968)

    Article  ADS  Google Scholar 

  18. V.N. Rebane: Opt. Spectr. (USSR)26, 371 (1969)

    Google Scholar 

  19. P.R. Berman, W.E. Lamb, Jr.: Phys. Rev.187, 221 (1969)

    Article  ADS  Google Scholar 

  20. E.L. Lewis, L.F. McNamara: Phys. Rev. A5, 2643 (1972)

    Article  ADS  Google Scholar 

  21. C.G. Carrington, D.N. Stacey, J. Cooper: J. Phys. B6, 417 (1973)

    Article  ADS  Google Scholar 

  22. E. Roeuff: J. Phys. B7, 185 (1974) References [23–28] have quantum-mechanical treatments of collisions, but ultimately neglect velocity-changing effects.

    Article  ADS  Google Scholar 

  23. M. Baranger: Phys. Rev.111, 481 (1958); ibid. M. Baranger: Phys. Rev.111, 494 (1958); ibid. M. Baranger: Phys. Rev.112, 855 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  24. D.W. Ross: Ann. Phys. (N.Y.)36, 458 (1966)

    Article  ADS  Google Scholar 

  25. V.V. Yakimets: Soviet Phys. JETP24, 990 (1967)

    ADS  Google Scholar 

  26. B. Bezzerides: J. Quant. Spectr. Radiative Transfer7, 353 (1967)

    Article  Google Scholar 

  27. Y.A. Vdovin, V.M. Galitskii: Soviet Phys. JETP25, 894 (1967)

    ADS  Google Scholar 

  28. H.R. Zaidi: Phys. Rev.173, 123 (1968)

    Article  ADS  Google Scholar 

  29. See, for example, R.E.M. Hedges, D.L. Drummond, A. Gallagher: Phys. Rev. A6, 1519 (1972)

    Article  ADS  Google Scholar 

  30. W. Voigt: K. Bayer. Akad. München, Ber. 603 (1912)

  31. P.R. Berman: J. Quant. Spectr. Radiative Transfer12, 1331 (1972); J. Ward, J. Cooper, E.W. Smith: ibid. J. Quant. Spectr. Radiative Transfer14, 555 (1974)

    Article  Google Scholar 

  32. R.H. Dicke: Phys. Rev.89, 472 (1953)

    Article  ADS  Google Scholar 

  33. J.P. Wittke, R.H. Dicke: Phys. Rev.103, 620 (1956);

    Article  ADS  Google Scholar 

  34. P.L. Bender, A.R. Chi: Phys. Rev.112, 450 (1958);

    Article  ADS  Google Scholar 

  35. M. Arditi, T.R. Carver: Phys. Rev.112, 449 (1958)

    Article  ADS  Google Scholar 

  36. V.G. Cooper, A.D. May, E.H. Hara, K.F.P. Knapp: Can. J. Phys.46, 2019 (1968)

    ADS  Google Scholar 

  37. J.R. Murray, A. Javan: J. Mol. Spectr.42, 1 (1972)

    Article  ADS  Google Scholar 

  38. R.S. Eng, A.R. Calawa, T.C. Harman, P.L. Kelley, A. Javan: Appl. Phys. Letters21, 303 (1972)

    Article  Google Scholar 

  39. F. DeMartini, F. Simoni, E. Santumato: Opt. Comm.9, 176 (1973) References [38–45] treat VAC from a classical viewpoint.

    Article  ADS  Google Scholar 

  40. L. Galatry: Phys. Rev.122, 1218 (1961)

    Article  ADS  Google Scholar 

  41. S.G. Rautian, I.I. Sobelman: Soviet Phys. -Usp.9, 701 (1967)

    Article  Google Scholar 

  42. S. Rautian, I. Sobelman: IEEE J. Quant. Electr.2, 446 (1966)

    Article  Google Scholar 

  43. S.G. Rautian: Soviet Phys. JETP24, 788 (1967)

    ADS  Google Scholar 

  44. J.I. Gersten, H.M. Foley: J. Opt. Soc. Am.58, 933 (1968)

    Google Scholar 

  45. B.L. Gyorffy, M. Borenstein, W.E. Lamb, Jr.: Phys. Rev.169, 340 (1968)

    Article  ADS  Google Scholar 

  46. A.B. Kolchenko, S.G. Rautian: Soviet Phys. JETP27, 511 (1968)

    ADS  Google Scholar 

  47. S. Stenholm: Phys. Rev. Letters26, 159 (1971);

    Article  ADS  Google Scholar 

  48. P. Pihlman, S. Stenholm: Physica Fennica8, 13 (1973) References [46–57] use a quantum-mechanical description of the center-of-mass motion in treating VAC.

    Google Scholar 

  49. T.L. Andreeva: Soviet Phys. JETP27, 342 (1968)

    ADS  Google Scholar 

  50. G. Pestov, S.G. Rautian: Soviet Phys. JETP29, 488 (1969)

    Google Scholar 

  51. P.R. Berman, W.E. Lamb, Jr.: Phys. Rev. A2, 2435 (1970); ibid. P.R. Berman, W.E. Lamb, Jr.: Phys. Rev. A4, 319 (1971)

    Article  ADS  Google Scholar 

  52. M. Cattani: Lett. Nuovo Cimento4, 346 (1970)

    Google Scholar 

  53. S. Hess: Physica (Utrecht)61, 80 (1972)

    Article  Google Scholar 

  54. E.W. Smith, J. Cooper, W.R. Chappell, T. Dillon: J. Quant. Spectr. Radiative Transfer11, 1547 (1971); ibid. E.W. Smith, J. Cooper, W.R. Chappell, T. Dillon: J. Quant. Spectr. Radiative Transfer11, 1567 (1971)

    Article  Google Scholar 

  55. W.R. Chappell, J. Cooper, E.W. Smith, T. Dillon: J. Stat. Phys.3, 401 (1971)

    Article  Google Scholar 

  56. P.R. Berman: Phys. Rev. A5, 927 (1972); ibid. P.R. Berman: Phys. Rev. A6, 2157 (1972)

    Article  ADS  Google Scholar 

  57. V.A. Alekseev, T.L. Andreeva, I.I. Sobelman: Soviet Phys. JETP35, 325 (1972).

    Google Scholar 

  58. H.R. Zaidi: Can. J. Phys.50, 2792 (1972)

    ADS  Google Scholar 

  59. E. Bielicz, E. Czuchaj, J. Fiutak: Acta Phys. Polon. A41, 327 (1972)

    Google Scholar 

  60. V.A. Alexseev, T.L. Andreeva, I.I. Sobelman: Soviet Phys. JETP37, 413 (1973)

    ADS  Google Scholar 

  61. P.R. Berman: Phys. Rev. A9, 2170 (1974)

    Article  ADS  Google Scholar 

  62. G. Nienhuis: Physica (Utrecht)66, 245 (1973)

    Article  Google Scholar 

  63. T.W. Meyer, C.K. Rhodes: Phys. Rev. Letters32, 637 (1974)

    Article  ADS  Google Scholar 

  64. R.G. Brewer, R.L. Shoemaker, S. Stenholm: ibid.33, 63 (1974); Phys. Rev. A, Dec. (1974)

    Article  ADS  Google Scholar 

  65. Recent review articles or articles containing many additional references are S. Haroche, F. Hartmann: Phys. Rev. A6, 1280 (1972);

    Article  ADS  Google Scholar 

  66. J. Shirley: Phys. Rev. A8, 347 (1973);

    Article  ADS  Google Scholar 

  67. M.S. Feld, V.S. Letokhov: Sci. Am.229, 69 (1973);

    Google Scholar 

  68. I.M. Beterov, R.I. Sokolovskii: Soviet Phys. -Usp.16, 339 (1973)

    Article  ADS  Google Scholar 

  69. D.E. Roberts, E.N. Fortson: Phys. Rev. Letters31, 1593 (1973);

    Article  Google Scholar 

  70. D. Pritchard: J. Apt and T. W. Ducas: ibid.32, 641 (1974);

    Article  ADS  Google Scholar 

  71. F. Biraben, B. Cagnac, G. Grynberg: ibid.32, 643 (;

    Article  ADS  Google Scholar 

  72. M.D. Levenson, N. Bloembergen: ibid.32, 645 (;

    Article  ADS  Google Scholar 

  73. J.E. Bjorkholm, P.F. Liao: ibid.33, 128 (1974);

    Article  ADS  Google Scholar 

  74. T.W. Hänsch, K.C. Harvey, G. Meisel, A.L. Schawlow: Opt. Comm.11, 50 (1974)

    Article  ADS  Google Scholar 

  75. T.W. Hänsch, I.S. Shahin, A.L. Schawlow: Phys. Rev. Letters27, 707 (1971)

    Article  ADS  Google Scholar 

  76. For a review article, see R.G. Brewer: Science178, 247 (1972).

    Article  ADS  Google Scholar 

  77. J. Schmidt, P.R. Berman, R.G. Brewer: Phys. Rev. Letters31, 1103 (1973);

    Article  ADS  Google Scholar 

  78. P.R. Berman, J.M. Levy, R.G. Brewer (submitted to Phys. Rev. A)

  79. R.L. Barger, J.L. Hall: Phys. Rev. Letters22, 4 (1969)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by U.S. Army Research Office.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berman, P.R. Theory of collision effects on atomic and molecular line shapes. Appl. Phys. 6, 283–296 (1975). https://doi.org/10.1007/BF00883644

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00883644

Index Headings

Navigation