Skip to main content
Log in

Analysis of fracture induced scattering of microseismic shear-waves

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Fractures are pervasive features within the Earth’s crust and have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic scattering enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic scattering and provide new results specific to shear-wave propagation. We do this by generating full waveform synthetics using finite-difference wave simulation within an isotropic background model containing explicit fractures. By considering a suite of fracture models having variable fracture density and fracture size, we examine the widening effect of wavelets due to scattering within a fractured medium by using several different approaches, such as root-mean-square envelope analysis, shear-wave polarisation distortion, differential attenuation analysis and peak frequency shifting. The analysis allows us to assess the scattering behavior of parametrised models in which the propagation direction is either normal or parallel to the fracture surfaces. The quantitative measures show strong observable deviations for fractures size on the order of or greater than the dominant seismic wavelength within the Mie and geometric scattering regime for both propagation normal and parallel to fracture strike. The results suggest that strong scattering is symptomatic of fractures having size on the same order of the probing seismic wave.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki K. and Richards P.G., 1980. Quantitative Seismology. W.H. Freeman and Co., San Francisco, CA.

    Google Scholar 

  • Baird A.F., Kendall J.-M. and Angus D.A., 2013. Frequency-dependent seismic anisotropy due to fractures: Fluid flow versus scattering. Geophysics, 78, WA111–WA122.

    Article  Google Scholar 

  • Barnes A.E., 1993. Instantaneous spectral bandwidth and dominant frequency with applications to seismic reflection data. Geophysics, 58, 419–428.

    Article  Google Scholar 

  • Barton N., 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. CRC Press, London U.K.

    Google Scholar 

  • Båth B., 1974. Spectral Analysis in Geophysics. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Carter A.J. and Kendall J.M., 2006. Attenuation anisotropy and the relative frequency content of split shear waves. Geophys. J. Int., 165, 865–874.

    Article  Google Scholar 

  • Chapman M., Maultzsch S., Liu E. and Li X.-Y., 2003. The effect of fluid saturation in an anisotropic multi-scale equant porosity model. J. Appl. Geophys., 54, 191–202.

    Article  Google Scholar 

  • Crampin S., 1981. A review of wave motion in anisotropic and cracked elastic media. Wave Motion, 3, 343–391.

    Article  Google Scholar 

  • Dvorkin J., Mavko G. and Nur A., 1995. Squirt flow in fully saturated rocks. Geophysics, 60, 97–107.

    Article  Google Scholar 

  • Fukushima Y., Nishizawa O., Sato H. and Ohtake M., 2003. Laboratory study on scattering characteristics of shear waves in rock samples. Bull. Seismol. Soc. Amer., 93, 253–263.

    Article  Google Scholar 

  • Hall S.A. and Kendall J.-M., 2000. Constraining the interpretation of AVOA for fracture characterisation. In: Ikelle L. and Gangi A. (Eds), Anisotropy 2000: Fractures, Converted Waves, and Case Studies. Society of Exploration Geophysicists, Tulsa, OK, 107–144.

    Google Scholar 

  • Hildyard M.W., 2001. Wave Interaction with Underground Openings in Fractured Rock. Ph.D. Thesis. University of Liverpool, Liverpool, U.K.

    Google Scholar 

  • Hildyard M.W., 2007. Manuel Rocha Medal Recipient- Wave interaction with underground openings in fractured rock. Rock Mech. Rock Eng., 40, 531–561.

    Article  Google Scholar 

  • Hudson J.A., 1981. Wave speeds and attenuation of elastic-waves in material containing cracks. Geophys. J. R. Astron. Soc., 64, 133–150.

    Article  Google Scholar 

  • Liu E. and Martinez A., 2012. Seismic Fracture Characterization: Concepts and Practical Applications. EAGE Publications, Houten, The Netherlands.

    Google Scholar 

  • Liu E.R., Hudson J.A. and Pointer T., 2000. Equivalent medium representation of fractured rock. J. Geophys. Res., 105, 2981–3000.

    Article  Google Scholar 

  • Lubbe R., Sothcott J., Worthington M. H. and McCann C., 2008. Laboratory estimates of normal and shear fracture compliance. Geophys. Prospect., 56, 239–247.

    Article  Google Scholar 

  • Margerin L., 2011. Seismic waves, scattering. In: Gupta H. (Ed.), Encyclopedia of Solid Earth Geophysics. Springer, Dordrecht, The Netherlands, 1210–1223.

    Chapter  Google Scholar 

  • Maultzsch S., 2005. Analysis of Frequency-Dependent Anisotropy in VSP Data. Ph.D. Thesis. University of Edinburgh, Edinburgh, U.K.

    Google Scholar 

  • Maultzsch S., Chapman M., Liu E. and Li X.Y., 2003. Modelling frequency-dependent seismic anisotropy in fluid-saturated rock with aligned fractures: implication of fracture size estimation from anisotropic measurements. Geophys. Prospect., 51, 381–392.

    Article  Google Scholar 

  • Müller T.M. and Shapiro S.A., 2001. Most probable seismic pulses in single realizations of two-and three-dimensional random media. Geophys. J. Int., 144, 83–95.

    Article  Google Scholar 

  • Narr W., Schechter D.W. and Thompson L.B., 2006. Naturally Fractured Reservoir Characterization. Society of Petroleum Engineers, Richardson, TX.

    Google Scholar 

  • Neerhoff F. and Van der Hijden J., 1984. Diffraction of elastic waves by a sub-surface crack (antiplane motion). J. Sound Vibr., 93, 523–536.

    Article  Google Scholar 

  • Nishimura T., 1996. Horizontal layered structure with heterogeneity beneath continents and island arcs from particle orbits of long-period P waves. Geophys. J. Int., 127, 773–782.

    Article  Google Scholar 

  • Nishizawa O., Pearson C. and Albright J., 1983. Properties of seismic wave scattering around water injection well at fenton hill hot dry rock geothermal site. Geophys. Res. Lett., 10, 101–104.

    Article  Google Scholar 

  • O’Connell R.J. and Budiansky B., 1974. Seismic velocities in dry and saturated cracked solids. J. Geophys. Res., 79, 5412–5426.

    Article  Google Scholar 

  • Pyrak-Nolte L.J. and Nolte D.D., 1992. Frequency dependence of fracture stiffness. Geophys. Res. Lett., 19, 325–328.

    Article  Google Scholar 

  • Quan Y. and Harris J.M., 1997. Seismic attenuation tomography using the frequency shift method. Geophysics, 62, 895–905.

    Article  Google Scholar 

  • Sato H., 1989. Broadening of seismogram envelopes in the randomly inhomogeneous lithosphere based on the parabolic approximation: Southeastern Honshu, Japan. J. Geophys. Res., 94, 17735–17747.

    Article  Google Scholar 

  • Sato H. and Fehler M.C., 1998. Seismic Wave Propagation and Scattering in the Heterogeneous Earth. Springer-Verlag, New York.

    Book  Google Scholar 

  • Sayers C. and Kachanov M., 1991. A simple technique for finding effective elastic constants of cracked solids for arbitrary crack orientation statistics. Int. J. Solids Struct., 27, 671–680.

    Article  Google Scholar 

  • Shearer P.M. and Earle P.S., 2004. The global short-period wave field modelled with a monte carlo seismic phonon method. Geophys. J. Int., 158, 1103–1117.

    Article  Google Scholar 

  • Shen F. and Toksöz M.N., 2000. Scattering characteristics in heterogeneously fractured reservoirs from waveform estimation. Geophysical Journal International, 140, 251–266.

    Article  Google Scholar 

  • Van Der Hijden, J. and Neerhoff, F. (1984). Scattering of elastic waves by a plane crack of finite width. J. Appl. Mech., 51, 646–651.

    Article  Google Scholar 

  • Verdon J.P. and Wüstefeld A., 2013. Measurement of the normal/tangential fracture compliance ratio (ZN/ZT) during hydraulic fracture stimulation using S-wave splitting data. Geophys. Prospect., 61, 461–475.

    Article  Google Scholar 

  • Willis M., Pearce F., Burns D., Byun J. and Minsley B., 2004. Reservoir fracture orientation and density from reflected and scattered seismic energy. 66th EAGE Conference and Exhibition 2014. EAGE Publications, EAGE, Houten, The Netherlands.

    Google Scholar 

  • Willis M.E., Burns D.R., Rao R., Minsley B., Toksöz M.N. and Vetri L., 2006. Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics, 71, O43–O51.

    Article  Google Scholar 

  • Worthington M. and Lubbe R., 2007. The scaling of fracture compliance. Geol. Soc. London Spec. Publ., 270, 73–82.

    Article  Google Scholar 

  • Yousef B.M. and Angus D.A., 2016. When do fractured media become seismically anisotropic? some implications on quantifying fracture properties. Earth Planet. Sci. Lett., 444, 150–159.

    Article  Google Scholar 

  • Zhang Y., Chi S., Willis M.E., Burns D. and Nafi T.M., 2005. Comparison of discrete fracture and effective media representation of fractures on azimuthal avo. SEG Technical Program Expanded Abstracts 2005, 305–307, DOI: 10.1190/1.2144328.

    Article  Google Scholar 

  • Zhang Y., Chi S., Willis M.E., Toksöz M.N. and Burns D.R., 2006. Orientation Estimation for Multiple Large Fractures by Scattering Energy. Technical Report. Earth Resources Laboratory, Massachusetts Institute of Technology, Cambridge, MA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doug A. Angus.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yousef, B.M., Angus, D.A. Analysis of fracture induced scattering of microseismic shear-waves. Stud Geophys Geod 61, 728–753 (2017). https://doi.org/10.1007/s11200-016-0384-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-016-0384-9

Keywords

Navigation