Skip to main content
Log in

Genetic organization ofAcetobacter for acetic acid fermentation

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Plasmid vectors for the acetic acid-producing strains ofAcetobacter andGluconobacter were constructed from their cryptic plasmids and the efficient transformation conditions were established. The systems allowed to reveal the genetic background of the strains used in the acetic acid fermentation. Genes encoding indispensable components in the acetic acid fermentation, such as alcohol dehydrogenase, aldehyde dehydrogenase and terminal oxidase, were cloned and characterized. Spontaneous mutations at high frequencies in the acetic acid bacteria to cause the deficiency in ethanol oxidation were analyzed. A new insertion sequence element, IS1380, was identified as a major factor of the genetic instability, which causes insertional inactivation of the gene encoding cytochromec, an essential component of the functional alcohol dehydrogenase complex. Several genes including the citrate synthase gene ofA. aceti were identified to confer acetic acid resistance, and the histidinolphosphate aminotransferase gene was cloned as a multicopy suppressor of an ethanol sensitive mutant. Improvement of the acetic acid productivity of anA. aceti strain was achieved through amplification of the aldehyde dehydrogenase gene with a multicopy vector. In addition, spheroplast fusion of theAcetobacter strains was developed and applied to improve their properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ADH :

membrane-bound alcohol dehydrogenase

ALDH :

membrane-bound aldehyde dehydrogenase

IS :

insertion sequence

NTG :

N-methyl-N′-nitro-N-nitrosoguanidine

PQQ:

pyrroloquinoline quinone

References

  • Ameyama M & Adachi O (1982a) Alcohol dehydrogenase from acetic acid bacteria, membrane-bound. In: Wood WA (Ed) Methods Enzymol. Vol. 89 (pp 450–457) Academic Press, New York

    Google Scholar 

  • Ameyama M & Adachi O (1982b) Aldehyde dehydrogenase from acetic acid bacteria, membrane-bound. In: Wood WA (Ed) Methods Enzymol Vol 89 (pp 491–497) Academic Press, New York

    Google Scholar 

  • Asai T (1968) Mutation of acetic acid bacteria. In: Acetic acid Bacteria, pp 59–67. University of Tokyo Press, Tokyo

    Google Scholar 

  • Bächi B & Ettlinger L (1974) Cytochrome difference spectra of acetic acid bacteria. Int. J. Syst. Bacteriol. 24: 215–220

    Google Scholar 

  • Brede G, Fjaervik E & Valla S (1991) Nucleotide sequence and expression analysis of theAcetobacter xylinum uridine diphosphoglucose pyrophosphorylase gene. J. Bacteriol. 173: 7042–7045

    PubMed  Google Scholar 

  • Carlomagno MS, Chiariotti L, Alifano P, Nappo AG & Broni CB (1988) Structure and function of theSalmonella typhimurium andEscherichia coli K-12 histidine operon. J. Mol. Biol. 233: 585–606

    Google Scholar 

  • Cannon RE & Anderson SM (1991) Biogenesis of bacterial cellulose. Crit. Rev. Microbiol. 17: 435–447

    PubMed  Google Scholar 

  • Chu X, Dai X & Lu D (1985) Chromosome transfer inGluconobacter oxydans mediated by pULB113 (RP4::Mini-Mu). Acta Microbiol. Sinca 25: 233–238

    Google Scholar 

  • Cleton-Jansen AM, Dekker S, van de Putte P & Goosen N (1991) A single amino acid substitution changes the substrate specificity of quinoprotein glucose dehydrogenase inGluconobacter oxydans. Mol. Gen. Genet. 229: 206–212

    PubMed  Google Scholar 

  • Condon C, Fitz-Gerald RJ & O'Gara F (1991) Conjugation and heterologous gene expression inGluconobacter oxydans ssp.suboxydans. FEMS Microbiol. Lett. 80: 173–177

    Google Scholar 

  • Coucheron DH (1991) AnAcetobacter xylinum insertion sequence element associated with inactivation of cellulose production. J. Bacteriol. 173: 5723–5731

    PubMed  Google Scholar 

  • Coucheron DH (1993) a family of Is1031 elements in the genome ofAcetobacter xylinum-nucleotide sequences and strain distribution. Mol. Microbiol. 9: 211–218

    PubMed  Google Scholar 

  • De Ley J, Gillis M & Swings J (1984a) FamilyAcetobacteraceae. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 1 (pp 267–268). William and Wilkins, Baltimore

    Google Scholar 

  • De Ley J, Swings J & Gosselé F (1984b) GenusAcetobacter. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 1 (pp 268–274). Williams and Wilkins, Baltimore

    Google Scholar 

  • De Ley J & Swings J (1984) GenusGluconobacter. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Systematic Bacteriology, Vol. 1 (pp 275–278). Williams and Wilkins, Baltimore

    Google Scholar 

  • Donald LJ, Molgaat GF & Duckworth HW (1989) Cloning, sequensing, and expression of the gene for NADH-sensitive citrate synthase ofPseudomonas aeruginosa. J. Bacteriol. 171: 5542–5550

    PubMed  Google Scholar 

  • Entani E, Ohmori S, Masai H & Suzuki K (1985)Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high activity. J. Gen. Appl. Microbiol. 31: 475–490

    Google Scholar 

  • Fjaervik E, Frydenlund K, Valla S, Huggirat Y & Benziman M (1991) Complementation of cellulose-negative mutants ofAcetobacter xylinum by the cloned structural gene for phosphoglucomutase. FEMS Microbiol. Lett. 77: 325–330

    Google Scholar 

  • Fujiwara M, Fukushi K, Takai M & Hayashi J (1989) Construction of shuttle vectors and a genetic transformation system for cellulose-producing bacteria:Acetobacter xylinum. In: Kenedy JF, Phillips GO & Williams PA (Eds) Cellulose, (pp 2083–2090). Ellis Horwood Ltd., Chichester

    Google Scholar 

  • Fujiwara M, Fukushi K, Takai M, Hayashi J, Fukaya M, Okumura H & Kawamura Y (1992) Construction of Shuttle vectors derived fromAcetobacter xylinum for cellulose-producing bacteriumAcetobacter xylinum. Biotechnol. Lett. 14: 539–542

    Google Scholar 

  • Fukaya M, Iwata T, Entani E, Masai H, Uozumi T & Beppu T (1985a) Distribution and characterization of plasmids in acetic acid bacteria. Agric. Biol. Chem. 49: 1349–1355

    Google Scholar 

  • Fukaya M, Okumura H, Masai H, Uozumi T & Beppu T (1985b) Construction of new shuttle vectors forAcetobacter. Agric. Biol. Chem. 49: 2083–2090

    Google Scholar 

  • Fukaya M, Tayama K, Okumura H, Masai H, Uozumi T & Beppu T (1985c) Improved transformation method forAcetobacter with plasmid DNA. Agric. Biol. Chem. 49: 2091–2097

    Google Scholar 

  • Fukaya M, Okumura H, Masai H, Uozumi T & Beppu T (1985d) Development of a host-vector system forGluconobacter suboxydans. Agric. Biol. Chem. 49: 2407–2411

    Google Scholar 

  • Fukaya M, Tayama K, Okumura H, Kawamura Y & Beppu T (1989a) Purification and characterization of membrane-bound aldehyde dehydrogenase fromAcetobacter polyoxogenes. sp. nov. Appl. Microbiol. Biotechnol. 32: 176–180

    Google Scholar 

  • Fukaya M, Tayama K, Tamaki T, Tagami H, Okumura H, Kawamura Y & Beppu T (1989b) Cloning of the membrane-bound aldehyde dehydrogenase gene ofAcetobacter polyoxogenes and improvement of acetic acid production by use of the cloned gene. Appl. Environ. Microbiol. 55: 171–176

    Google Scholar 

  • Fukaya M, Tagami H, Tayama K, Okumura H, Kawamura Y & Beppu T (1989c) Spheroplast fusion ofAcetobacter aceti and its application to the breeding of strains for vinegar production. Agric. Biol. Chem. 53: 2435–2440

    Google Scholar 

  • Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S & Beppu T (1990) Cloning of genes responsible for acetic acid resistance inAcetobacter aceti. J. Bacteriol. 172: 2096–2104

    PubMed  Google Scholar 

  • Fukaya M, Tayama K, Tamaki T, Ebisuya H, Okumura H, Kawamura Y, Horinouchi S & Beppu T (1993) Characterization of a cytochromea 1 that functions as a ubiquinol oxidase inAcetobacter aceti. J. Bacteriol. 175: 4307–4314

    PubMed  Google Scholar 

  • Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Horinouchi S & Beppu T (1993) TheaarC gene responsible for acetic acid assimilation confers acetic acid resistance onAcetobacter aceti. J. Ferment. Bioeng. (in press)

  • Groen BW, Van Kleef AG & Duine JA (1986) Quinohaemoprotein alcohol dehydrogenase apoenzyme fromPseudomonas testosteroni. Biochem. J. 243: 611–615

    Google Scholar 

  • Grones J, Skerenona M & Turna J (1991) Preparation of recombinant plasmids with kanamycin resistance in plasmid pAC1 fromAcetobacter pasteurianus. Biologia 46: 673–678

    Google Scholar 

  • Grones J & Turna J (1992) Construction of shuttle vectors for cloning inEscherichia coli andAcetobacter pasteurianus. Folia Microbiol. 37: 395–400

    Google Scholar 

  • Grones J, Kralona A & Turna J (1993) Characterization of the replicon from plasmid pAC1 fromAcetobacter pasteurianus. Biochem. Biophys. Res. Commun. 191: 26–31

    PubMed  Google Scholar 

  • Hall PE, Anderson SM, Johnston DM & Cannon RE (1992) Transformation ofAcetobacter xylinum with plasmid DNA by electroporation. Plasmid 28: 194–200

    PubMed  Google Scholar 

  • Harms N, De Vries GE, Maurer K, Hoogendijk J & Stouthamer AH (1987) Isolation and nucleotide sequence of the methanol dehydrogenase structural gene fromParacoccus denitrificans. J. Bacteriol. 169:3969–3975

    PubMed  Google Scholar 

  • Inoue T, Fukuda M & Yano K (1985) Efficient introduction of vector plasmids into acetic acid bacteria. J. Ferment. Technol. 63: 1–4

    Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M & Yano K (1989) Cloning and sequencing of the gene encoding the 72-kilo-dalton dehydrogenase subunit of alcohol dehydrogenase fromAcetobacter aceti. J. Bacteriol. 171: 3115–3122

    PubMed  Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M, & Yano K (1990) Possible functinal domains in a quinoprotein alcohol dehydrogenase fromAcetobacter aceti. J. Ferment. Bioeng. 70: 58–60

    Google Scholar 

  • Inoue T, Sunagawa M, Mori A, Imai C, Fukuda M, Takagi M & Yano K (1992) Nucleotide sequence of the gene encoding the 45-kilogalton subunit of alcohol dehydrogenase fromAcetobacter aceti. J. Ferment. Bioeng. 73: 419–424

    Google Scholar 

  • Jucker W & Ettlinger L (1981) Host range of a bacteriophage of acetic acid bacteria. Int. J. Syst. Bacteriol. 31: 245–246

    Google Scholar 

  • Judd AK & Sadousky MJ (1993) TheBradyrhizobium japanicum serocluster 123 hyperreiterated DNA region, HRS1, has DNA and amino acid sequence homology to IS1380, an insertion sequence fromAcetobacter pasteurianus. Appl. Environ. Microbiol. 59: 1656–1661

    PubMed  Google Scholar 

  • Machlin SM & Hanson RS (1988) Nucleotide sequence and transcriptional start site of theMethylobacterium organophilum XX methanol dehydrogenase structural gene. J. Bacteriol. 170: 4739–4747

    PubMed  Google Scholar 

  • Marathe S, Connerton IF & Fincham JRS (1990) Duplication-induced mutation of a newNeurospora gene required for acetate utilization: properties of the mutant and predicted amino acid sequence of the protein product. Mol. Cell. Biol. 10: 2638–2644

    PubMed  Google Scholar 

  • Masuda M, Kawasaki H & Tonomura K (1983) Plasmids inGluconobacter. Hakkokogaku 61: 15–18

    Google Scholar 

  • Matsushita K, Nagatani Y, Shinagawa, E, Adachi O & Ameyama M (1989) Effect of extracellular pH on the respiratory chain and energetics ofGluconobacter suboxydans. Agric. Biol. Chem. 53: 2895–2902

    Google Scholar 

  • Matsushita K, Takaki Y, Shinagawa E, Ameyama M & Adachi O (1992) Ethanol oxidase respiratory chain of acetic acid bacteria. Reactivity with ubiquinone of pyrroloquinoline quinone-dependent alcohol dehydrogenases purified fromAcetobacter aceti andGluconobacter suboxydans. Biosci. Biotech. Biochem. 56: 304–310

    Google Scholar 

  • Murooka Y, Takizawa N & Harada T (1981) Introduction of bacteriophage Mu into bacteria of various genera and intergeneric gene transfer by RP4::Mu. J. Bacteriol. 145: 358–368

    PubMed  Google Scholar 

  • Ner SS, Bhayana V, Bell AW, Giles IG, Duckworth HW & Blexham DP (1983) Complete sequence of thegltA gene encoding citrate synthase inEscherichia coli. Biochemistry 22: 5243–5249

    Google Scholar 

  • Ohmori S, Masai H, Arima K & Beppu T (1980) Isolation and identification of acetic acid bacteria for submerged acetic acid fermentation at high temperature. Agric. Biol. Chem. 44: 2901–2906

    Google Scholar 

  • Ohmori S, Uozumi T & Beppu T (1982) Loss of acetic acid resistance and ethanol oxidizing ability in anAcetobacter strain. Agric. Biol. Chem. 46: 381–389

    Google Scholar 

  • Okumura H, Uozumi T & Beppu T (1985a) Construction of plasmid vectors and a genetic transformation system forAcetobacter aceti. Agric. Biol. Chem. 49: 1011–1017

    Google Scholar 

  • Okumura H, Uozumi T & Beppu T (1985b) Biochemical characteristics of spontaneous mutants ofAcetobacter aceti deficient in ethanol oxidation. Agric. Biol. Chem. 49: 2485–2487

    Google Scholar 

  • Okumura H, Tagami H, Fukaya M, Masai H, Kawamura Y, Horinouchi S & Bepp T (1988) Cloning of the β-isoprophylmalate dehydrogenase gene fromAcetobacter aceti and its use for construction of a new host-vector system forAcetobacter. Agric. Biol. Chem. 52: 3125–3129

    Google Scholar 

  • Qazi GN, Verma V, Parshad R & Chopra CL (1989) Plasmidmediated direct-glucose oxidation inGluconobacter oxydans. J. Biotechnol. 10: 85–88

    Google Scholar 

  • Robakis NK, Palleroni NJ, Despreaux CW, Boublik M, Baker CA, Churn PJ & Claus GW (1985a) Isolation and characterization of two phages forGluconobacter oxydans. J. Gen. Microbiol. 131: 2467–2473

    Google Scholar 

  • Robakis NK, Palleroni NJ, Boublik M & Despreaux CW (1985b) Construction of a restriction map of theGluconobacter bacteriophage A-1 genome. J. Gen. Microbiol. 131: 2475–2477

    Google Scholar 

  • Saxena IM, Lin FC & Brown RM Jr (1990) Cloning and sequenceing of the cellulose synthase catalytic subunit gene ofAcetobacter xylinum. Plant Mol. Biol. 15: 673–683

    PubMed  Google Scholar 

  • Saxena IM, Lin FC & Brown RM Jr (1991) Identification of a new gene in an operon for cellulose biosynthesis inAcetobacter xylinum. Plant Mol. Biol. 16: 947–954

    PubMed  Google Scholar 

  • Schocher AJ, Kuhn H, Schindler B, Palleroni NJ, Despreaux CW, Boublik M & Miller PA (1979)Acetobacter bacteriophage A-1. Arch. Microbiol. 121: 193–197

    Google Scholar 

  • Stamm WW, Kittelmann M, Follmann H & Truper HG (1989) The occurrence of bacteriophages in spirit vinegar fermentation. Appl. Microbiol. Biotechnol. 30: 41–46

    Google Scholar 

  • Swings J, De Ley J & Holt JG (1984) GenusFrateuria. In: Krieg NR & Holt JG (Eds) Bergey's Manual of Determinative Bacteriology, Vol. 1 (pp 210–213), Williams & Wilkins, Baltimore

    Google Scholar 

  • Swings J (1992) The generaAcetobacter andGluconobacter. In: Balows A, Truper HG, Dworkin M, Harder W & Schleifer KH (Eds) The Prokaryotes, A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, Vol. 3 (pp 2268–2286) Springer-Verlag, New York

    Google Scholar 

  • Tagami H, Tayama K, Tohyama T, Fukaya M, Okumura H, Kawamura Y, Horinouchi S & Beppu T (1988) Purification and properties of a site-specific restriction endonucleaseAaaI fromAcetobacter aceti subsp.aceti No. 1023. FEMS Microbiol. Lett. 56: 161–166

    Google Scholar 

  • Takeda Y & Shimizu T (1991) Cloning and sequencing of the gene encoding cytochromec-553 (CO) fromGluconobacter suboxydans. J. Ferment. Bioeng. 72: 1–6

    Google Scholar 

  • Takeda Y & Shimizu T (1992) Expression of cytochromec-553 (CO) gene that complements the second subunit deficiency of membrane-bound alcohol dehydrogenase inGluconobacter suboxydans subsp. α. J. Ferment. Bioeng. 73: 89–93

    Google Scholar 

  • Takeda Y, Takehara H & Shimizu T (1993) Comparison of the second alcohol dehydrogenase subunit in acetic acid bacteria. J. Ferment. Bioeng. 75: 217–219

    Google Scholar 

  • Takemura H, Horinouchi S & Beppu T (1991) Novel insertion sequence IS1380 fromAcetobacter pasteurianus is involved in loss of ethanol-oxidizing ability. J. Bacteriol. 173: 7070–7076

    PubMed  Google Scholar 

  • Takemura H, Horinouchi S & Beppu T (1993a) Overexpression of thehisl gene encoding histidinol phosphate aminotransferase suppresses an ethanol-sensitive mutation ofAcetobacter pasteurianus. J. Ferment. Bioeng. (in press)

  • Takemura H, Kondo K, Horinouchi S & Beppu T (1993b) Induction by ethanol of alcohol dehydrogenase activity inAcetobacter pasteurianus. J. Bacteriol. (in press)

  • Tamaki T, Horinouchi S, Fukaya M, Okumura H, Kawamura Y & Beppu T (1989) Nucleotide sequence of the membranebound aldehyde dehydrogenase gene fromAcetobacter polyoxogenes. J. Biochem. 106: 541–544

    PubMed  Google Scholar 

  • Tamaki T, Fukaya M, Takemura H, Tayama K, Okumura H, Kawamura Y, Nishiyama M, Horinouchi S & Beppu T (1991) Cloning and sequencing of the gene cluster encoding two subunits of membrane-bound alcohol dehydrogenase fromAcetobacter polyoxogenes. Biochim. Biophys. Acta 1088: 292–300

    PubMed  Google Scholar 

  • Tayama K, Fukaya M, Okumura H, Kawamura Y & Beppu T (1989) Purification and characterization of mambrane-bound alcohol dehydrogenase fromAcetobacter polyoxogenes sp. nov. Appl. Microbiol. Biotechnol. 32: 181–185

    Google Scholar 

  • Tayama K, Fukaya M, Takemura H, Okumura H, Kawamura Y, Horinouchi S & Beppu T (1993) Cloning and sequencing of therecA + genes ofAcetobacter polyoxogenes andAcetobacter aceti: construction ofrecA mutants by transformation-mediated gene replacement. Gene. 127: 47–52

    PubMed  Google Scholar 

  • Teuber M, Andresen A & Sievers M (1987a) Bacteriophage problems in vinegar fermentations. Biotechnol. Lett. 9: 37–38

    Google Scholar 

  • Teuber M, Sievers M & Andresen A (1987b) Characterization of the microflora of high acid submerged vinegar fermenters by distinct plasmid profiles. Biotechnol. Lett. 9: 265–268

    Google Scholar 

  • Valla S, Coucheron DH & Kjosbakken J (1986) Conjugative transfer of the naturally occurring plasmids ofAcetobacter xylinum by IncP-plasmid-mediated mobilization. J. Bacteriol. 165: 336–339

    PubMed  Google Scholar 

  • Valla S, Coucheron DH & Kjosbakken J (1987) The plasmids ofAcetobacter xylinum and their interaction with the host chromosome. Mol. Gen. Genet. 208: 76–83

    PubMed  Google Scholar 

  • Valla S, Coucheron DH, Fjaervik E, Kjosbakken J, Weinhouse H, Ross P, Amikam D & Benziman M (1989) Cloning of a gene involved in cellulose biosynthesis inAcetobacter xylinum: complementation of cellulose-negative mutants by the UDPG pyrophosphorylase structural gene. Mol. Gen. Genet. 217: 26–30

    PubMed  Google Scholar 

  • Verma V, Qazi GN & Parshad R (1992) Intergeneric protoplast fusion betweenGluconobacter oxydans andCorynebacterium species. J. Biotechnol. 26: 327–330

    PubMed  Google Scholar 

  • Wood DD, Williamson LR, Herbert HH & Krause DC (1987) Nucleotide sequence of theRickettsia prowazekii citrate synthase gene. J. Bacteriol. 169: 3564–3572

    PubMed  Google Scholar 

  • Wong HC, Fear AL, Calhoon RD, Eichinger GH, Mayer R, Amikam D, Benziman M, Gelfand DH, Meade JH, Emerick AW, Bruner R, Ben-Bassat A & Tal R (1990) Genetic organization of the cellulose synthase operon inAcetobacter xylinum. Proc. Natl. Acad. Sci. USA 87: 8130–8134

    PubMed  Google Scholar 

  • Wünsche L, Fischer H & Kiesel B (1983a) Lysogenie und lysogene konversion bei methylotrophen bakterien. I. Nachweis des lysogenie und zustandes des fakultativ methanolassimilierenden stammesAcetobacter MB58/1 und charakterisierung seines temperenten phagen MO1. Z. Allg. Mikrobiol. 23: 81–94

    PubMed  Google Scholar 

  • Wünsche L, Kiesel B & Fischer H (1983b) Lysogenie und lysogene konversion bei methylotrophen bakterien II. Lysogene konversion bei fakaltativ methanolassimilierendenAcetobacter-stämmen. Z. Allg. Mikrobiol. 23: 189–196

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beppu, T. Genetic organization ofAcetobacter for acetic acid fermentation. Antonie van Leeuwenhoek 64, 121–135 (1993). https://doi.org/10.1007/BF00873022

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00873022

Key words

Navigation