Skip to main content
Log in

Interannual variability and regional climate simulations

  • Published:
Theoretical and Applied Climatology Aims and scope Submit manuscript

Summary

An assessment is made of a regional climate model's skill in simulating the mean climatology and the interannual variability experienced in a specific region. To this end two ensembles comprising three realizations of month-long January and July simulations are undertaken with a limited are a operational NWP model. The modelling suite is driven at its lateral boundaries by analysed meteorological fields and the computational domain covers Europe and the North-western Atlantic with a horizontal resolution of 56 km.

Validation is performed against both operational ECMWF analyses and objectively analysed precipitation fields from a network of ~ 1400 SYNOP rain gauge stations. Analysis of the simulated ensemble-mean climatology indicates that the model successfully reproduces both the winter and summer distributions of the primary dynamical and thermodynamical field, and also provides a reasonable representation of the measured precipitation over most of Europe. Typically the domain averaged model-biases are below 0.5 K for temperature and 0.1 g/kg for specific humidity. Analysis of the interannual variability reveals that the model captures the wintertime changes including that of the precipitation distribution, but in contrast the summertime precipitation totals for the individual years is not simulated satisfactorily and only partially reproduces the observed regional interannual variability.

The latter shortcomings are related to the following factors. Firstly the model bias in the dynamical fields is somewhat larger for summer than winter, while at the same time summertime interannual variability is associated with weaker effects in the dynamical fields. Secondly the summertime precipitation distribution is more substantially affected by small-scale moist convection and surface hydrological processes. Together these two factors suggest that summertime precipitation over continental extratropical land masses might be intrinsically less predictable than wintertime synoptic scale precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • AMS, 1991: On global climate change.Bull. Amer. Meteor. Soc. 72, 57–59.

    Google Scholar 

  • Cress, A., Majewski, D., Podzun, R., Renner, V., 1995: Simulation of European climate with a limited area model. Part I: Observed boundary conditions.Contrib. Atmos. Phys. 68, 161–178.

    Google Scholar 

  • Davies, H. C., 1976: A lateral boundary formulation for multi-level prediction models.Quart. J. Roy. Meteor. Soc. 102, 405–418.

    Google Scholar 

  • Deque, M., Piedelievre, J. Ph., 1995: High resolution climate simulation over Europe.Climate Dynamics, (submitted).

  • Dickinson, R. E., Errico, R. M., Giorgi, F., Bates, G. T., 1989: A regional climate model for the western United States.Climatic Change 15, 383–422.

    Google Scholar 

  • Fliri, F., 1974: Niederschlag und Lufttemperatur im Alpenraum.Wissenschaftliche Alpenvereinshefte,24, 111 pp.

    Google Scholar 

  • Fliri, F., 1984: Synoptische Klimatologie der Alpen zwischen Mont Blanc und Hohen Tauern.Wissenschaftliche Alpenvereinshefte,29, 686pp.

    Google Scholar 

  • Giorgi, F., 1990: Sensitivity of wintertime precipitation and soil hydrology simulation over the western United States to lower boundary specifications.Atmos. Ocean 18, 1–23.

    Google Scholar 

  • Giorgi, F., Mearns, L. O., 1991: Approaches to the simulation of regional climate change: A review.Rev. Geophys. 29(2), 191–216.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., 1991: Validation of a regional atmospheric model over Europe: Sensitivity of wintertime and summertime simulations to selected physics parameterizations and lower boundary conditions.Quart. J. Roy. Meteor. Soc. 117, 1171–1206.

    Google Scholar 

  • Giorgi, F., Marinucci, M. R., Visconti, G., 1992: A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 2: Climate change scenario.J. Geophys. Res. 97, 10011–10028.

    Google Scholar 

  • Groisman, P. Y., Legates, D. R., 1994: The accuracy of United States precipitation data.Bull. Amer. Meteor. Soc. 75, 215–227.

    Google Scholar 

  • Houghton, J. T., Jenkins, G. J., Ephraums, J. J., (eds.), 1990:Climatic Change: The IPCC Scientific Assessment. World Meteorological Organization/United Nations Environment Programme, Cambridge Univ. Press, 365pp.

  • Houghton, J. T., Callander, B. A., Varney, S. K., (eds.), 1992:Climate Change 1992. The Supplementary Report to the IPCC Scientific Assessment. World Meteorological Organization / United Nations Environment Programme, Cambridge Univ. Press, 200pp.

  • Jacobsen, I., Heise, E., 1982: A new economic method for the computation of the surface temperature in numerical models.Beitr. Phys. Atmos. 55, 128–141.

    Google Scholar 

  • Jones, R. G., Murphy, J. M., Noguer, M., 1995: Simulation of climate change over Europe using a nested regional climate model. I: Assessment of control climate, including sensitivity to location of boundaries.Quart. J. Roy. Meteor. Soc.,121, (in press).

  • Louis, J. F., 1979: A parametric model of vertical eddy fluxes in the atmosphere.Bound. Layer Meteor. 17, 187–202.

    Google Scholar 

  • Majewski, D., 1985: Balanced initial and boundary values for a limited-area model.Contrib. Atmos. Phys. 58, 147–159.

    Google Scholar 

  • Majewski, D., 1991: The Europa-Modell of the Deutscher Wetterdienst. ECMWF Proc. “Numerical methods in atmospheric models”. Reading, GB, September 1991, Vol 2, 147–191.

  • Majewski, D., Schrodin, R., 1994: Short Description of the Europa-Modell (EM) and Deutschland-Modell (DM) of the Deutscher Wetterdienst (DWD). (Quarterly Bulletin).

  • Marinucci, M. R., Giorgi, F., 1992: A 2 × CO2 climate change scenario over Europe generated using a limited area model nested in a general circulation model. 1: Present-day seasonal climate simulation.J. Geophys. Res. 97, 9989–10009.

    Google Scholar 

  • Mellor, G. L., Yamada, T., 1974: A hierarchy of turbulence closure models for planetary boundary layers.J. Atmos. Sci. 31, 1791–1806.

    Google Scholar 

  • McGregor, J. L., Walsh, K., 1994: Climate change simulations of Tasmanian precipitation using multiple nesting.J. Geophys. Res. 99, 20889–20905.

    Google Scholar 

  • Müller, E., 1981: Turbulent flux parameterization in a regional-scale model. ECMWF Workshop on planetary boundary layer parameterization, 193–220.

  • Podzun, R., Cress, A., Majewski, D., Renner, V., 1995: Simulation of European climate with a limited area model. Part II: AGCM boundary conditions.Contrib. Atmos. Phys.,68, (in press).

  • Ritter, B., Geleyn, J. F., 1992: A comprehensive radiation scheme for numerical weather prediction with potential applications in climate simulations.Mon. Wea. Rev. 109, 758–766.

    Google Scholar 

  • Robinson, P. J., Finkelstein, P. L., 1991: The development of impact-orientated climate scenarios.Bull. Amer. Meteor. Soc. 72, 481–490.

    Google Scholar 

  • Sevruk, B., 1985: Correction of precipitation measurements, summary report. In: Proceedings of the ETH/IAHS/WMO workshop on the correction of precipitation data; Zürich, 1985, 13–23.

  • Shepard, D. S., 1968: A two-dimensional interpolation function for irregularly-spaced data. Proceedings — 1968 ACM National Conference, 517–524.

  • Shepard, D. S., 1984: Computer mapping: The SYMAP interpolation algorithm. In: Gaile, G. L., Willmott, C. J., (eds.)Spatial Statistics and Models, pp. 133–145.

  • Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large-scale models.Mon. Wea. Rev. 117, 1779–1800.

    Google Scholar 

  • Willmott, C. J., Rowe, C. M., Philpot, W. D., 1985: Small-scale climate maps: a sensitivity analysis of some common assumptions associated with grid-point interpolation and contouring.The Americ. Cartographer 12, 5–16.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 17 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüthi, D., Cress, A., Davies, H.C. et al. Interannual variability and regional climate simulations. Theor Appl Climatol 53, 185–209 (1996). https://doi.org/10.1007/BF00871736

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00871736

Keywords

Navigation