Skip to main content
Log in

Direct and reverse energy transport in systems of monomers and imperfect traps: Monte Carlo simulations

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A Monte Carlo simulation of the concentration dependence of the fluorescence quantum yield ŋM and emission anisotropyr M of a system containing dye molecules in the form of monomers M and clusters T (statistical pairs and trimers) playing the role of the imperfect traps for nonradiative excitation energy transfer (NET) has been carried out. The simulation has been made for determined values of Förster critical distancesR MM0 andR MT0 and for several values ofR TM0 andR TT0 , assuming that the energy may be transferred from M* to T as well as from T* to M (reverse nonradiative energy transfer, RNET). It was shown that the RNET process in the range of high concentrations may strongly change the values ofr M as well as those of ŋM. For emission anisotropyr M an effect of repolarization was observed which decreases rapidly with increasingR TM0 andR TT0 . A very good agreement between the simulation results of ŋM and the theoretical model with no adjustable parameters was found. In the model, the RNET process and influence of correlation between active molecules on energy migration among monomers were taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Bojarski and K. Sienicki (1989) in J. F. Rabek (Ed.),Photochemistry and Photophysics, Vol. 1, CRC Press, Boca Raton, FL, pp. 1–57.

    Google Scholar 

  2. G. S. Beddard and G. Porter (1976)Nature (London) 260, 366–367.

    Google Scholar 

  3. A. Penzkofer and Y. Lu (1986),Chem. Phys. 103, 399–405.

    Google Scholar 

  4. J. Knoester and J. E. Van Himbergen (1987)J. Chem. Phys. 86, 3571–3576; (1987)J. Chem. Phys. 86, 4438–4441.

    Google Scholar 

  5. J. Knoester and J. E. Van Himbergen (1987)J. Chem. Phys. 86, 3577–3582.

    Google Scholar 

  6. A. Penzkofer and W. Leupacher (1987)J. Lumin. 37, 61–72.

    Google Scholar 

  7. D. R. Lutz, K. A. Nelson, C. R. Gochanour, and M. D. Fayer (1981)Chem. Phys. 58, 325–334.

    Google Scholar 

  8. C. Bojarski (1984)Z. Naturforsch. 39a, 948–951.

    Google Scholar 

  9. L. L. Shipman (1980)Photochem. Photobiol. 31, 157–167.

    Google Scholar 

  10. C. S. French (1971)Proc. Natl. Acad. Sci. USA 68, 2893–2897.

    PubMed  Google Scholar 

  11. A. N. Rubinov, V. I. Tomin, and A. Buschuk (1982)J. Lumin. 26, 377–391.

    Google Scholar 

  12. V. I. Yuzhakov (1979)Russ. Chem. Rev. (Engl. Transl.)48, 1076–1102.

    Google Scholar 

  13. L. V. Levshin and A. M. Saletskij (1990)Opt. Spektrosk. 68, 354–358.

    Google Scholar 

  14. M. Kasha, H. R. Rawls, and M. A. El-Bayoumi (1965)Pure Appl. Chem. 11, 371–392.

    Google Scholar 

  15. G. Zurkowska and C. Bojarski (1986) inProc. Int. Symp. Mol. Lumin. Photophys., Toruń, Poland, pp. 57–60.

  16. C. Bojarski and G. Zurkowska (1987)Z. Naturforsch. 42a, 1451–1455.

    Google Scholar 

  17. R. Twardowski and J. Kuśba (1988)Z. Naturforsch. 43a, 627–632.

    Google Scholar 

  18. K. Sienicki and M. A. Winnik (1988)Chem. Phys. 121, 163–174.

    Google Scholar 

  19. I. Ketskeméty, J. Dombi, R. Horvai, J. Hevesi, and L. Kozma (1961)Acta Phys. Chem. Szeged. 7, 17–24.

    Google Scholar 

  20. A. Budó and I. Ketskeméty (1957)Acta Phys. Hung. 7, 207–223; (1962)Acta Phys. Hung. 14, 167–176.

    Google Scholar 

  21. I. Ketskeméty and J. Kuśba (1977)Acta Phys. Chem. Szeged 23, 375–382.

    Google Scholar 

  22. R. F. Loring, H. C. Andersen, and M. D. Fayer (1982)J. Chem. Phys. 76, 2015–2027.

    Google Scholar 

  23. Th. Förster (1948)Ann. Phys. (Leipzig) 2, 55–75.

    Google Scholar 

  24. C. Bojarski, A. Bujko, R. Bujko, and M. Cherek (1986)Acta Phys. Hung. 59, 307–320.

    Google Scholar 

  25. J. R. Lakowicz (1986)Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Google Scholar 

  26. C. Bojarski and J. Dudkiewicz (1971)Z. Naturforsch. 26a, 1028–1031; (1972)Z. Naturforsch. 27a, 1751–1755.

    Google Scholar 

  27. C. Bojarski and G. Obermueller (1976)Acta Phys. Polon. A 50, 389–411.

    Google Scholar 

  28. J. P. Webb, W. C. Mc Colgin, O. G. Peterson, D. L. Stockman, and J. H. Eberly (1970)J. Chem. Phys. 53, 4227–4229.

    Google Scholar 

  29. C. Bojarski and J. Domsta (1970)Z. Naturforsch. 25a, 1760; (1971)Acta Phys. Hung. 30, 145–166.

    Google Scholar 

  30. R. Twardowski, J. Kuśba, and C. Bojarski (1982)Chem. Phys. 64, 239–248.

    Google Scholar 

  31. D. L. Huber, D. Hamilton, and D. Barnett (1977)Phys. Rev. B 16, 4642–4650.

    Google Scholar 

  32. D. L. Huber (1979)Phys. Rev. B 20, 5333–5338.

    Google Scholar 

  33. R. Twardowski and C. Bojarski (1985)J. Lumin. 33, 79–85.

    Google Scholar 

  34. A. I. Burshtein (1985)J. Lumin. 34, 201–209.

    Google Scholar 

  35. M. D. Galanin (1950)Trudy Fiz. Inst. Akad. Nauk USSR 5, 341–344.

    Google Scholar 

  36. A. Jabloński (1970)Acta Phys. Polon. A 38, 453–458.

    Google Scholar 

  37. E. L. Eriksen and A. Ore (1967)Phys. Norvegica 2, 159–171.

    Google Scholar 

  38. C. Bojarski (1971)Z. Phys. Chem. Neue Folge 75, 242–247.

    Google Scholar 

  39. C. Bojarski (1971)Z. Naturforsch. 26a, 1856–1859.

    Google Scholar 

  40. C. Bojarski, J. Kuśba, and G. Obermueller (1971)Z. Naturforsch. 26a, 255–259.

    Google Scholar 

  41. A. Kawski (1983)Photochem. Photobiol. 38, 487–508.

    Google Scholar 

  42. C. Bojarski, J. Grabowska, L. Kulak, and J. Kuśba (1991)J. Fluoresc. 1, 183–191.

    Google Scholar 

  43. A. Kawski, P. Bojarski, A. Kubicki, and C. Bojarski (1991)J. Lumin. 50, 61–68.

    Google Scholar 

  44. Th. Förster (1951)Fluoreszenz Organischer Verbindungen, Vandenhoeck und Ruprecht, Göttingen (1951); (1966)Proc. Int. Conf. Lumin., Akad. Kiado, Budapest, Vol. 1, pp. 160–165.

    Google Scholar 

  45. V. L. Levshin (1963)Izw. Akad. Nauk SSSR Ser. Fiz. 27, 540–550.

    Google Scholar 

  46. B. I. Makszantsev, E. A. Dynin, and V. M. Finkelberg (1981)Chem. Phys. 59, 137–148.

    Google Scholar 

  47. M. D. Ediger and M. D. Fayer (1985)Int. Rev. Phys. Chem. 4, 207–235.

    Google Scholar 

  48. K. Sienicki (1990)Chem. Phys. 146, 79–87.

    Google Scholar 

  49. F. Lopez Arbeloa, P. Ruiz Ojeda, and I. Lopez Arbeloa (1989)J. Lumin. 44, 105–112.

    Google Scholar 

  50. Th. Förster and E. König (1957)Z. Elektrochem. Ber. Bunsenges. Phys. Chem. 61, 344–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulak, L., Bojarski, C. Direct and reverse energy transport in systems of monomers and imperfect traps: Monte Carlo simulations. J Fluoresc 2, 123–131 (1992). https://doi.org/10.1007/BF00867672

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00867672

Key Words

Navigation