Skip to main content
Log in

Elastic coefficients of aluminum as functions of the degree of compression in a shock wave

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

The velocities of elastic relief waves in commercial aluminum (AD1) and aluminum alloy (D16) samples compressed by a shock wave were measured by the most direct method. Using these results together with the relationship for the three-dimensional velocity of sound as a function of the intensity of the sound wave (derived on the assumption that the shock adiabat and the one-dimensional release isentrope coincide when expressed in pressure/mass-velocity coordinates), Young's modulus, the shear modulus, and the Poisson coefficient are calculated for shock-compressed aluminum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. L. V. Al'tshuler, S. B. Kormer, M. I. Brazhnik, L. A. Vladimirov, M. P. Speranskaya, and A. I. Funtikov, “Isentropic compressibility of aluminum, copper, lead, and iron at high pressures,” Zh. Éksp. Teor. Fiz.,38, No. 4, 1061 (1960).

    Google Scholar 

  2. R. Fowles and R. F. Williams, “Plane-stress wave propagation in solids,” J. Appl. Phys.,41, No. 1, 360 (1970).

    Google Scholar 

  3. M. Cowperthwaite and R. F. Williams, “Determination of constitutive relationships with multiple gauges in nondivergent waves,” J. Appl. Phys.,42, No. 1, 456 (1971).

    Google Scholar 

  4. D. R. Curran, “Nonhydrodynamic attenuation of shock waves in aluminum,” J. Appl. Phys.,34, No. 9, 2677 (1963).

    Google Scholar 

  5. J. O. Erkman and A. B. Christensen, “Attenuation of shock waves in aluminum,” J. Appl. Phys.,38, No. 13, 5395 (1967).

    Google Scholar 

  6. A. S. Kusubov and M. van Thiel, “Dynamic yield strength of 2024-T4 aluminum at 313 kbar,” J. Appl. Phys.,40, No. 2, 893 (1969).

    Google Scholar 

  7. A. R. McMillan, “Shock wave attenuation at high pressure,” Bull. Amer. Phys. Soc.,13, No. 12, 1680 (1968).

    Google Scholar 

  8. S. A. Novikov and L. M. Sinitsina, “Influence of the pressure of shock compression on critical shear stresses in metals,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 6 (1970).

  9. L. V. Al'tshuler, M. I. Brazhnik, and G. S. Telegin, “Strength and elasticity of iron and copper at high pressures of shock compression,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 6, 159 (1971).

    Google Scholar 

  10. P. J. A. Fuller and J. H. Price, “Dynamic stress-strain release paths for aluminum and magnesium measured to 200 kbar,” Brit. J. Appl. Phys. (J. Phys. D), Ser. 2,2, No. 2 (1969).

  11. A. S. Kusubov and M. van Thiel, “Measurement of elastic and plastic unloading wave profiles in 2024-T4 aluminum alloy,” J. Appl. Phys.,40, No. 9, 3776 (1969).

    Google Scholar 

  12. P. J. A. Fuller and J. H. Price, “Dynamic pressure measurements to 300 kbar with a resistance transducer,” Brit. J. Appl. Phys.,15, No. 6, 751 (1964).

    Google Scholar 

  13. B. D. Khristoforov, E. É. Goller, A. Ya. Sidorin, and L. D. Livshits, “Manganin sensor for measuring the pressure of shock waves in solids,” Fiz. Goreniya i Vzryva,7, No. 4, 613 (1971).

    Google Scholar 

  14. A. N. Dremin and G. I. Kanel', “Pressure dependence of the electrical resistance of Manganin MNMts and Constantan MNMts 40-1.5 on shock loading,” Fiz. Goreniya i Vzryva,8, No. 1, 147 (1972).

    Google Scholar 

  15. Compendium of Shock-Wave Data, Vol. 1, Ser. A-1, University of California (1970).

  16. F. F. Voronov and L. F. Vereshchagin, “Influence of hydrostatic pressure on the elastic properties of metals. I. Experimental data,” Fiz. Metal. i Metalloved.,11, No. 3 (1961).

  17. R. E. Schmunk and C. S. Smith, “Pressure derivatives of the elastic constants of aluminum and magnesium,” J. Phys. Chem. Solids,9, No. 2, 100–112 (1959).

    Google Scholar 

  18. J. Vallin, M. Mongy, K. Salama, and O. Beckmann, “Elastic constants of aluminum,” J. Appl. Phys.,35, No. 6, 1825 (1964).

    Google Scholar 

  19. G. N. Kamm and G. A. Alers, “Low-temperature elastic moduli of aluminum,” J. Appl. Phys.,35, No. 2, 327 (1964).

    Google Scholar 

  20. L. V. Al'tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, “Equations of state of aluminum, copper, and lead in the high-pressure region,” Zh. Éksp. Teor. Fiz.,38, No. 3, 790 (1960).

    Google Scholar 

  21. L. V. Al'tshuler, “Use of elastic waves in high-pressure physics,” Usp. Fiz. Nauk,85, No. 2, 197 (1965).

    Google Scholar 

  22. A. N. Dremin and G. I. Kanel', “Refraction of the leading edge of an oblique shock wave at the boundary with a less rigid medium,” Zh. Prikl. Mekhan. Tekh. Fiz., No. 3, 140 (1970).

    Google Scholar 

  23. D. J. Pastine and D. J. O'Keefe, “Theoretical estimates of elastic relief-wave velocities with applications to aluminum and copper,” J. Appl. Phys.,41, No. 6, 2743 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 94–100, September–October, 1974.

The authors wish to thank S. S. Nabatov and V. V. Yakushev, who presented their own design of powder gun, and V. A. Varnav for help in the measurements.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vorob'ev, A.A., Dremin, A.N. & Kanel', G.I. Elastic coefficients of aluminum as functions of the degree of compression in a shock wave. J Appl Mech Tech Phys 15, 661–665 (1974). https://doi.org/10.1007/BF00851526

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00851526

Keywords

Navigation