Skip to main content
Log in

Ganglioside changes in the chicken optic lobes and cerebrum during embryonic development

Transient occurrence of “novel” multisialo-gangliosides

  • Published:
Wilhelm Roux's archives of developmental biology Aims and scope Submit manuscript

Summary

The developmental profiles of 15 different gangliosides of the optic lobes and cerebrum of the chicken were followed from the 6 th day of incubation to hatching and correlated to morphological development. Five of these gangliosides appearing in both structures between the sixth and tenth day, have not been reported previously in higher vertebrates. Three chromatographed on TLC-plates similarly to GT3, GT2, and GT1c gangliosides, which have been demonstrated in fish brain. One fraction moved just below GQ1b and is suggested, to contain GQ1c. These “novel” gangliosides, which are possibly related to a recently proposed separate and probably phylogenetically older biosynthetic pathway, contained up to 20% of total ganglioside sialic acid. The fifth “novel” fraction, containing up to 16% of total ganglioside-sialic acid, moved below the penta-sialoganglioside GP1 and is suggested to contain hexa-sialogangliosides.

There were two main changes in ganglioside synthesis, which were identical in both structures.

The first occurred from the sixth to the eleventh day, parallel to decreased proliferation, maximal cell migration and neuroblast differentiation, GD3 and GD2 decreased rapidly in favour of GQ1b, GP1, and to the “novel” fractions, described above.

The second occurred from the eleventh to the eighteenth day, parallel to increased growth and arborization of dendrites and axons as well as functional establishment of synaptic contacts, there was a sharp rise in the amount of GD1b, GT1b, and GD1a. Concomitantly the “novel” gangliosides decreased. At hatching GD1a was the predominant ganglioside. GM3, GM2, and GM1 were always minor fractions, each accounting for less than 4% of total ganglioside-sialic acid. GM4 was never detected, indicating neglegible myelinisation until hatching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

NeuAc:

N-Acetylneuraminic acid

GM4 :

I3NeuAc-GalCer

GM3 :

II3NeuAc-LacCer

GM2 :

II3NeuAc-GgOse3Cer

GM1 :

II3NeuAc-GgOse4Cer

GD3 :

II3(NeuAc)2LacCer

GD1a :

IV3NeuAc, II3NeuAc GgOse4Cer

GT3 :

II3 (NeuAc)3LacCer

GD2 :

II3(NeuAc)2GgOse3Cer

GD1b :

II3(NeuAc)2GgOse3Cer

GD1b :

II3(NeuAc)2GgOse4Cer

GT2 :

II3(NeuAc)3GgOse3Cer

GT1b :

IV3NeuAc, II3(NeuAc)2GgOse4Cer

GT1c :

II3(NeuAc)3GgOse4Cer

GQ1b :

IV3(NeuAc)2 II3(NeuAc)2GgOse4Cer

GQ1c :

IV3NeuAc, II3(NeuAc)3GgOse4Cer

GP1 :

IV3(NeuAc)2, II3(NeuAc)3GgOse4Cer

G“H”(?) :

IV3(NeuAc)3, II3(NeuAc)3GgOse4Cer

References

  • Ando S, Chang N, Yu RK (1978) High-performance tin-layer chromatography and densitometric determination of brain ganglioside composition of several species. Anal Biochem 89:437–450

    PubMed  Google Scholar 

  • Ando S, Yu RK (1977) Isolation and characterisation of human and chicken brain tetrasialoganglioside. Proc Int Soc Neurochem 6:535

    Google Scholar 

  • Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glycosyltransferase from embryonic chicken brain. J. Biol. Chem 248:1388–1394

    PubMed  Google Scholar 

  • Berra B, Cestaro B, O Salè F, Venerando B, Beltrame D, Cantone A (1978) Gangliosides and neuraminidases in foetal rat brain. Bull Molec Biol Med 3:86–97

    Google Scholar 

  • Bignami A, Palladini G, Venturini G (1966) Sodium-potassium adenosine triphosphatase in the developing chick brain. Brain Res 3:207–209

    PubMed  Google Scholar 

  • Bondy StC, Madson CJ (1971) Development of rapid axonal flow in the chick embryo. J Neurobiol 2:279–286

    PubMed  Google Scholar 

  • Brady RO, Mora PT (1970) Alteration in ganglioside pattern and synthesis in SV 40-and Polyoma virus-transformed mouse cell lines. Biochim Biophys Acta 218:308–319

    Google Scholar 

  • Breer H, Rahmann H (1977) Cholinesteraseaktivität und Hirnganglioside während der Fischentwicklung. Wilhelm Roux's Archives 181:65–72

    Google Scholar 

  • Cajal S, Ramón Y (1889) Estructura del lóbulo óptico de las aves y origen de los nervios ópticos. Rev trimestr Histol 314

  • Carrigan OW, Chargaff E (1963) Studies on the mucolipids and the cerebrosides of chicken brain during embryonic development. Biochim Biophys Acta 70:452–464

    PubMed  Google Scholar 

  • Corner MA, Schade JP, Sedlacek J, Stoeckart R, Bot APC (1967) Developmental pattern in the central nervous system of birds. I. Electrical activity in the cerebral hemispheres, optic lobes and cerebellum. Prog Brain Res 26:145–192

    PubMed  Google Scholar 

  • Cowan WM, Martin AH, Wenger E (1968) Mitotic pattern in the optic tectum of the chick during normal development and after early removal of the optic vesicle. J Exp Zool 169:71–92

    PubMed  Google Scholar 

  • Dicessare JL, Dain JA (1970) The enzymic, synthesis of ganglioside: IV. UDP-N-acetylgalactosamine: (N-acetylneuraminyl)-galactosylglucosyl ceramide N-acetylgalactosaminyltransferase in rat brain. Biochim Biophys Acta 231:385–393

    Google Scholar 

  • Domesick VB, Morest DK (1977) Migration and differentiation of ganglion cells in the optic tectum of the chick embryo Neuroscience 2:477–491

    PubMed  Google Scholar 

  • Dreyfus H, Urban PF, Edel-Harth S, Mandel P (1975) Developmental patterns of gangliosides and of phospholipids in chick retina and brain. J. Neurochem 25:245–250

    PubMed  Google Scholar 

  • Dreyfus H, Louis JC, Harth S, Pettmann B, Urban PF, Mandel P (1979) Development of gangliosides and sialytransferase activities during maturation of isolated neurons. Proc 5th Int Symp on Glycoconjugates, Kiel, pp 704

  • Ellman GL, Courtney KD, Andres VJ, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  PubMed  Google Scholar 

  • Fishman PH, Brady RO (1976) Biosynthesis and function of gangliosides. Science 194:906–915

    PubMed  Google Scholar 

  • Gayet J, Bonichon A (1961) Morphological differentiation and metabolism in the optic lobes of the chick embryo. In: Kety SS, Elkes J (eds) Regional neurochemistry. Pergamon Press, New York, pp 135–150

    Google Scholar 

  • Hansson HH, Holmgren J, Svennerholm L (1977) Ultrastructural localization of cell membrane GM1 ganglioside by cholera toxin. Proc Natl Acad Sci USA 74:3782–3786

    PubMed  Google Scholar 

  • Hilbig R, Rahmann H (1980) Variability in brain gangliosides of fishes. J Neurochem 34:236–240

    PubMed  Google Scholar 

  • Irwin LN, Chen H, Barraco RA (1976) Ganglioside, protein, hexose, and sialic acid changes in the trisected optic tectum of the chick embryo. Dev Biol 49:29–39

    PubMed  Google Scholar 

  • Ishizuka J, Wiegandt H (1972) An isomer of trisialoganglioside and the structure of tetra- and pentasialogangliosides from fish brain. Biochem Biophys Acta 260:279–289

    PubMed  Google Scholar 

  • Karten HJ, Hodos W, Nanta WJ Revzin AM (1973) Neural connections of the “visualwulst” of the avian telencephalon. Experimental studies on the pigeon (Columba livia) and owl (Speotyto cunicularia) J Comp Neurol 150:253–278

    PubMed  Google Scholar 

  • Kaufman B, Basu S, Roseman S (1968) Enzymatic synthesis of disialogangliosides from monosialogangliosides by sialytransferases from embryonic chicken brain. J Biol Chem 243: 5804–5807

    PubMed  Google Scholar 

  • Kolodny EH (1972) Sandhoff's disease: studies on the enzyme defect in homozygotes and detection of heterozygotes. Adv Exp Med Biol 19:321–341

    Google Scholar 

  • La Vail JH, Cowan WM (1971) The development of the chick optic tectum. I. Normal morphology and cytoarchitectonic development. Brain Res 28:391–419

    PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  Google Scholar 

  • Marchand A, Chapoutheir G, Massoulié J (1971) Developmental aspects of acetylcholinesterase activity in chick brain. FEBS Lett 78:233–236

    Google Scholar 

  • Merat A, Dickerson JWT (1973) The effect of development on the gangliosides of rat and pig brain. J Neurochem 20:873–880

    PubMed  Google Scholar 

  • Mestrallet F, Cumar A, Caputto R (1977) Trisialoganglioside synthesis by a chicken brain sialyltransferase. Comparative study with the similar reaction for the synthesis of disialoganglioside. Mol Cell Biochem 16:63–70

    PubMed  Google Scholar 

  • Miettinen T, Takki-Lukkainen IT (1959) Use of butyl acetate in determination of sialic acid. Acta Chem Scand 13:856–858

    Google Scholar 

  • Morgan JI, Seifert W (1979) Growth factors and gangliosides: A possible new perspective in neuronal growth control. J Supramol Struct 10:111–124

    PubMed  Google Scholar 

  • Morgan JG, Zanetta JP, Breckenridge WC, Vincendon G, Gombos G (1973) The chemical structure of synaptic membranes. Brain Res 62:405–411

    PubMed  Google Scholar 

  • Moskal JR, Gardner DA, Basu S (1974) Changes in glycolipid glycosyltransferases and glutamate decarboxylase and their relationship to differentiation in Neuroblastoma Cells. Biochem Biophys Res Commun 61:751–756

    PubMed  Google Scholar 

  • Partington CR, Daly JW (1978) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol Pharmacol 15:484–491

    Google Scholar 

  • Peters JJ, Vanderahe AR, Powers JH (1958) Electrical studies of functional development of the eye and optic lobes in the chick embryo. J Exp Zool 139:459–468

    Google Scholar 

  • Romanoff AL (1960) The avian embryo-structural and functional development. Macmillan Company, New York

    Google Scholar 

  • Rösner H (1975) Changes in the content of gangliosides and glycoproteins and in the ganglioside pattern of the chicken brain. J Neurochem 24:815–816

    PubMed  Google Scholar 

  • Rösner H (1977) Gangliosides, sialoglycoproteins and acetylcholinesterase of the developing mouse brain. Wilhelm Roux's Archives 183:325–335

    Google Scholar 

  • Rösner H, Merz G, Rahmann H (1979a) Binding of d-Tubocurarine by gangliosides. Hoppe-Seyler's Z Physiol Chem 360: 413–420

    PubMed  Google Scholar 

  • Rösner H, Kröger H, Rahmann H (1979b) Synthesis, axonal transport and turnover of retinal ganglion cell gangliosides in different aged chicken. Proceed 5th Int Symp on Glycoconjugates, 706, Kiel

  • Rösner H, Segler K, Rahmann H (1979c) Changes of brain gangliosides in chicken and mice during heterothermic development. J Thermal Biol 4:121–124

    Google Scholar 

  • Sandhoff K, Christomanou, H (1979) Biochemistry and genetic of gangliosides. Humangenetic 50:107–143

    Google Scholar 

  • Schengrund C, Rosenberg A (1971) Gangliosides, glycosidases, and sialidase in the brain and eye of developing chicken. Biochemistry 10:2424–2428

    PubMed  Google Scholar 

  • Sedlaceck J, Stastny F (1973) Morphological, biochemical and functional changes in chick embryonic brain tissue after intracerebral administration of Quabain. Dev Psychobiol 6:567–577

    PubMed  Google Scholar 

  • Steigerwald JC, Basu S, Kaufman D, Roseman S (1975) Sialic acids, Enzymatic synthesis of Tay-Sachs ganglioside. Biol Chem 250:6727–6734

    Google Scholar 

  • Stieda L (1869) Studien über das Zentral-Nervensystem der Vögel und Säugetiere. Z Wiss Zool 19:1–94

    Google Scholar 

  • Suzuki K (1965) The pattern of mammalian brain Gangliosides III; regional and developmental differences. J Neurochem 12: 969–979

    PubMed  Google Scholar 

  • Suzuki K (1967) Formation and turnover of the major brain gangliosides during development. J Neurochem 14:917–925

    PubMed  Google Scholar 

  • Svennerholm L (1957) Quantitative estimation of sialic acids. Biochim Biophys Acta 24:604–611

    PubMed  Google Scholar 

  • Svennerholm L (1963) Chromatographic separation of human brain gangliosides. J Neurochem 10:613–623

    PubMed  Google Scholar 

  • Svennerholm L (1970) Gangliosides. In: Lajtha A (ed) Handbook of neurochemistry, vol 3. Plenum Press, New York, pp 425–452

    Google Scholar 

  • Tallmann JF, Brady RO, Navon R, Padeh B (1974) Ganglioside catabolism in hexosaminidase A-deficient adults. Nature 252:254–255

    PubMed  Google Scholar 

  • Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta (Amst) 296:160–170

    Google Scholar 

  • Vanier MT, Holm M, Öhman R, Svennerholm L (1971) Developmental profiles of gangliosides in human and rat brain. J Neurochem 18:581–592

    PubMed  Google Scholar 

  • Whitehead MC (1979) Growth of dendrites in the optic tectum of the chick embryo following destruction of the eye primordium. Neuroscience 4:379–390

    PubMed  Google Scholar 

  • Wiegandt H (1967) The subcellular localisation of gangliosides in the brain J Neurochem 14:671–674

    PubMed  Google Scholar 

  • Wiegandt H (1972) Recent advances on the chemistry and localisation of brain gangliosides and related glycosphingolipids. Adv Exp Med Biol 127–140

  • Yip MCM, Dain JA (1970) Frog brain uridine diphosphate galactose-N-acetylgalactosaminyl-N-acetylneuraminylgalactosylceramide galactosyltransferase. Biochem J 118:247–252

    PubMed  Google Scholar 

  • Yohe HC, Yu RK (1979) Biosynthesis of the novel trisialoganglioside GT1a Trans Am Soc Neurochem 10:93

    Google Scholar 

  • Yu RK, Ando S (1978) Novel gangliosides of fish brain. Trans Am Soc Neurochem 9:135

    Google Scholar 

  • Yu RK, Ando S (1980) Structures of some new xomplex gangliosides of fish brain. Adv Exp Med Biol 125:33–45

    PubMed  Google Scholar 

  • Yu RK, Iqbal (1979) Sialylgalactosyl ceramide as a specific marker for human myelin and oligodendroglia perikarya: Gangliosides of human myelin, oligodendroglia and neurons. J Neurochem 32:293–300

    PubMed  Google Scholar 

  • Yusuf HK, Merat A, Dickerson JWT (1977) Effect of development on the gangliosides of human brain. J Neurochem 28: 1299–1304

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rösner, H. Ganglioside changes in the chicken optic lobes and cerebrum during embryonic development. Wilhelm Roux' Archiv 188, 205–213 (1980). https://doi.org/10.1007/BF00849050

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00849050

Key words

Navigation