Skip to main content
Log in

Crystal structures of Co3(SeO3)3·H2O and Ni3(SeO3)3·H2O, two new isotypic compounds

Die Kristallstrukturen von Co3(SeO3)3·H2O und Ni3(SeO3)3·H2O, zwei neue isotype Verbindungen

  • Anorganische Und Physikalische Chemie
  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary

The crystal structures of the new, hydrothermally synthesized, isotypic compounds Co3(SeO3)3·H2O and Ni3(SeO3)3·H2O were determined by direct and Fourier methods and refined toR w=0.023, 0.032 using single crystal X-ray data up to sinϑ/λ=0.81 Å−1 [space group P\(\bar 1\),a=8.102 (2), 7.986 (3) Å;b=8.219 (2), 8.133 (3) Å;c=8.572 (2), 8.422 (3) Å, α=69.15 (1), 69.50 (1)°; β=62.88 (1), 62.50 (1)°; γ=67.23 (1), 67.64 (1)°;Z=2]. The structures are built up from [Me 5(SeO3)6·2H2O]2− sheets containing three crystallographically different types of octahedrally coordinatedMe 2+ and trigonal pyramidal coordinated Se4+ atoms, respectively. These sheets are linked only by a fourth type ofMe 2+[6] atom. All coordination polyhedra deviate significantly from their ideal shapes, bond lengths within the extremly distortedMe(4)O6 polyhedra range from 1.983 (2) Å to 2.403 (2) Å in Co3(SeO3)3·H2O and from 1.987 (4) Å to 2.301 (3) Å in the Ni compound, O-Se-O bond angles were found between 92.8 (2)° and 104.9 (1)°. Hydrogen bond lengths are 2.802 (3)Å and 2.600 (4)Å in the Co compound, and 2.762 (6) Å and 2.561 (6) Å in Ni3(SeO3)3·H2O. The latter is one of the shortest known hydrogen bonds donated by a water molecule.

Zusammenfassung

Die Kristallstrukturen der neuen, hydrothermal synthetisierten, isotypen Verbindungen Co3(SeO3)3·H2O und Ni3(SeO3)3·H2O wurden mit direkten und Fourier-Methoden bestimmt und unter Verwendung von Einkristallröntgendaten bis sinϑ/λ=0.81 Å−1 aufR w-Werte von 0.023, 0.032 verfeinert [Raumgruppe P\(\bar 1\),a=8.102 (2), 7.986 (3) Å;b=8.219 (2), 8.133 (3) Å;c=8.572 (2), 8.422 (3) Å, α=69.15 (1), 69.50 (1)°; β=62.88 (1), 62.50 (1)°; γ=67.23 (1), 67.64 (1)°;Z=2]. Die Strukturen werden von [Me 5(SeO3)6·2H2O]2− Schichten aufgebaut, die je drei kristallographisch unterschiedliche Arten von oktaedrisch koordiniertenMe 2+ und trigonal pyramidal koordinierten Se4+ Atomen enthalten. Diese Schichten sind nur durch eine vierte Art vonMe 2+[6] Atomen verknüpft. Alle Koordinationspolyeder weichen deutlich von ihren Idealformen ab, Bindungslängen in den extrem verzerrtenMe(4)O6 Polyedern variieren zwischen 1.983 (2) Å und 2.403 (2) Å in Co3(SeO3)3·H2O und zwischen 1.987 (4) Å und 2.301 (3) Å in der Ni-Verbindung, O-Se-O-Bindungswinkel liegen zwischen 92.8 (2)° und 104.9 (1)°. Wasserstoffbrückenlängen sind 2.802 (3) Å und 2.600 (4) Å in der Co-Verbindung, und 2.762 (6) Å und 2.561 (6) Å in Ni3(SeO3)3·H2O. Letztere ist eine der kürzesten bekannten Wasserstoffbrücken eines Wassermoleküls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wildner M. (1988) Diploma Thesis. Univ. Wien

  2. Wildner M. (1988) Z. Krist.185: 499

    Google Scholar 

  3. Wildner M. (1990) N. Jb. Miner. Mh.1990: 353

    Google Scholar 

  4. Ibers J. A., Hamilton W. C. (eds.) (1974) International Tables for X-Ray Crystallography, Vol. IV. Kynoch Press, Birmingham

    Google Scholar 

  5. Zachariasen W. H. (1967) Acta Cryst.23: 558

    Google Scholar 

  6. Brown I. D. (1981) Structure and Bonding in Crystals, Vol. II-14. Academic Press, New York

    Google Scholar 

  7. Brown I. D., Shannon R. D. (1973) Acta Cryst.A29: 266

    Google Scholar 

  8. Robinson K., Gibbs G. V., Ribbe P. H. (1971) Science172: 567

    Google Scholar 

  9. Fischer R., Zemann J. (1974) Handbook of Geochemistry II-3, 34-A. Springer, Berlin Heidelberg New York

    Google Scholar 

  10. Giester G. (1989) Monatsh. Chem.120: 661

    Google Scholar 

  11. Effenberger H., Pertlik F. (1984) Z. Krist.166: 129

    Google Scholar 

  12. Effenberger H. (in preparation) Monatsh. Chem.

  13. Krishnamachari N., Calvo C. (1972) Acta Cryst.B28: 2883

    Google Scholar 

  14. Tordjman I., Guitel J. C., Durif A., Averbuch M. T., Masse R. (1978) Mat. Res. Bul.13: 983

    Google Scholar 

  15. Keller P., Riffel H., Zettler F., Hess H. (1981) Z. Anorg. Allg. Chem.474: 123

    Google Scholar 

  16. Jasper-Tönnies B., Müller-Buschbaum H. (1984) Z. Anorg. Allg. Chem.517: 161

    Google Scholar 

  17. Ruszala F. A., Anderson J. B., Kostiner E. (1977) Inorg. Chem.16: 2417

    Google Scholar 

  18. Sasaki S., Takéuchi Y. (1982) Z. Krist.158: 279

    Google Scholar 

  19. Buckley A. M., Bramwell S. T., Day P. (1990) J. Sol. State Chem.86: 1

    Google Scholar 

  20. Chiari G., Ferraris G. (1982) Acta Cryst.B38: 2331

    Google Scholar 

  21. Wildner M. (1990) Thesis. Univ. Wien

  22. Dowty E. (1989) Atoms. A Computer Program for Displaying Atomic Structures. Shape Software, Kingsport

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wildner, M. Crystal structures of Co3(SeO3)3·H2O and Ni3(SeO3)3·H2O, two new isotypic compounds. Monatsh Chem 122, 585–594 (1991). https://doi.org/10.1007/BF00811457

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00811457

Keywords

Navigation