Skip to main content
Log in

Evaluation of the incorporation of bone grafts used in maxillofacial surgery with [18F]fluoride ion and dynamic positron emission tomography

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

This study investigates the incorporation of bone grafts used in maxillofacial surgery by means of [18F]fluoride ion and positron emission tomography (PET). It considers patients who received pedicle grafts for mandibular reconstruction or onlay grafts for alveolar ridge augmentation. Dynamic PET images and arterialized venous blood samples were obtained within a 1-h period after i.v. injection of [18F-]fluoride. Assuming a three-compartment model and applying multilinear least squares fitting, bone blood flow (K 1) and fluoride influx (K mlf) were determined. Additionally Patlak plot analysis was used to calculate fluoride influx (K pat). In cervical vertebral bodies as the reference region, mean values for flow ofK 1 = 0.1162±0.0396 ml/min/ml and influx ofK mlf = 0.0508±0.0193 andK pat = 0.0385±0.0102 ml/min/ml were found. Essentially these figures are comparable with physiological values in animal and man reported in the literature. Early after surgery a significant increase in flow and influx compared to vertebral bodies was observed in the regions of osteosyntheses between grafts used for reconstruction and recipient bone (K 1 = 0.2181,K mlf = 0.1000 andK pat = 0.0666 ml/min/ml) and in onlay grafts (K 1 = 0.2842,K mlf = 0.1637 andK pat = 0.0827 ml/min/ml). At the same time pedicle grafts showed a significant increase in flow but not in influx (K 1 = 0.2042,K mlf = 0.0774 andK pat = 0.0529 ml/ min/ml). FurthermoreK pat was significantly lower in pedicle grafts than in onlay grafts. In follow-up studies a significant decrease in flow occurred in pedicle grafts and the regions of osteosyntheses. Moreover the latter showed a significant decrease inK mlf as well. It is concluded that [18F-] PET depicted increased blood flow and osteoblastic activity in onlay grafts and regions of osteosyntheses, indicating bone repair in the graft and adjacent host bone early after surgery. For the regions of osteosyntheses the decrease in both parameters corresponded to uncomplicated healing. The lack of increased influx, although flow was increased in pedicle grafts, most likely indicates that some necrosis occurred in these grafts despite patency of anastomoses. It may be concluded that [18F-] PET provides further insight into the biology of graft incorporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arden RL, Burgio DL. Bone autografting of the craniofacial skeleton: clinical and biological considerations.Am J Otolaryngol 1992; 13: 328–341.

    Google Scholar 

  2. Hausamen JE, Neukam FW. Transplantation von Knochen.Eur Arch Otorhinolaryngol Suppl 1992; 1: 163–177.

    Google Scholar 

  3. Goldberg VM, Shaffer JW, Field G, Davy DT. Biology of vascularized bone grafts.Orthop Clin North Am 1987; 18: 197–205.

    Google Scholar 

  4. Berding G, Bothe K, Gratz KF Schmelzeisen R Neukam FW, Hundeshagen H. Bone scintigraphy in the evaluation of bone grafts used for mandibular reconstruction.Eur J Nucl Med 1994; 21: 113–117.

    Google Scholar 

  5. Fig LM, Shulkin BL, Sullivan MJ, Rubinstein MI, Baker SR. Utility of emission tomography in evaluation of mandibular bone grafts.Arch Otolaryngol Head Neck Surg 1990; 116: 191–196.

    Google Scholar 

  6. Kärcher H, Füger G, Borbely L. Bone scintigraphy of vascularized bone transfer in maxillofacial surgery.Oral Surg Oral Med Oral Pathol 1988; 65: 519–522.

    Google Scholar 

  7. Lukash FN, Tenenbaum NS, Moskowitz G. Long-term fate of the vascularized iliac crest bone graft for mandibular reconstruction.Am J Surg 1990; 160: 399–401.

    Google Scholar 

  8. Greiff J. Bone fracture healing studied by99mTc-Sn-polyphos-phate autoradiography and scintimetry.Dan Med Bull 1983; 30: 150–157.

    Google Scholar 

  9. Van Dyke D, Anger HO, Yano Y, Bozzini C. Bone blood flow shown with F18 and the positron camera.Am J Physiol 1965; 209: 65–70.

    Google Scholar 

  10. Wootton R, Doré C. The single-passage extraction of 18F in rabbit bone.Clin Phys Physiol Meas 1986; 7: 333–343.

    Google Scholar 

  11. Grynpas MD. Fluoride effects on bone crystals.J Bone Miner Res 1990; 5 Suppl 1: S169-S175.

    Google Scholar 

  12. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, Satyamurthy N, Barrio JR, Phelps ME. Evaluation of skeletal kinetics of fluorine-18-fluoride ion with PET.J Nucl Med 1992; 33: 633–642.

    Google Scholar 

  13. International Commission on Radiological Protection. ICRP Publication 53.Radiation dose to patients from radiopharmaceuticals. Oxford: Pergamon Press, 1988.

    Google Scholar 

  14. International Commission on Radiological Protection. ICRP Publication 60.1990 Recommendations of the International Commission on Radiological Protection. Oxford: Pergamon Press, 1991.

    Google Scholar 

  15. Charkes ND, Makler PT, Philips C. Studies of skeletal tracer kinetics. I. Digital computer solution of a five-compartment model of [F-18] fluoride kinetics in humans.J Nucl Med 1978; 19: 1301–1309.

    Google Scholar 

  16. Blomqvist G. On the construction of functional maps in positron emission tomography.J Cereb Blood Flow Metab 1984; 4: 629–632.

    Google Scholar 

  17. Van den Hoff J, Burchert W, Müller-Schauenburg W, Meyer GJ, Hundeshagen H. Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization.J Nucl Med 1993; 34: 1770–1777.

    Google Scholar 

  18. Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data.J Cereb Blood Flow Metab 1983; 3: 1–7.

    Google Scholar 

  19. Patlak CS, Blasberg RG. Graphical evaluation of blood-tobrain transfer constants from multiple-time uptake data. Generalizations.J Cereb Blood Flow Metab 1985; 5: 584–590.

    Google Scholar 

  20. Ackerhalt RE, Blau M, Bakshi S, Sondel JA. A comparative study of three99mTc-labeled phosphorus compounds and18F-fluoride for skeletal imaging. J Nucl Med 1974; 15: 1153–1157.

    Google Scholar 

  21. Barrett JJ, Smith PHS. Bone imaging with99Tcm polyphosphate: a comparison with18F and skeletal radiography.Br J Radiol 1974; 47: 387–392.

    Google Scholar 

  22. Creutzig H. Comparative investigations concerning osteotropic radiopharmaceuticals. III. Scanning with18F and99mTc-EH-DP in malignant and non-malignant diseases.Fortschr Rontgenstr 1975; 123: 462–467.

    Google Scholar 

  23. Krishnamurthy GT, Thomas PB, Tubis M, Endow JS, Pritchard JH, Blahd WH. Comparison of99mTc-polyphosphate and18F. I. Kinetics. J Nucl Med 1974; 15: 832–836.

    Google Scholar 

  24. Krishnamurthy GT, Walsh CF, Shoop ES, Berger HG, JH, Blahd WH. Comparison of99mTe-polyphosphate and18F. II. Imaging.J Nucl Med 1974; 15: 837–843.

    Google Scholar 

  25. Weber DA, Keyes JW, Landman S, Wilson GA. Comparison of Tc99m polyphosphate and18F for bone imaging.Am J Roentgenol 1974; 121: 184–190.

    Google Scholar 

  26. Hoh CK, Hawkins RA, Dahlbom M, Glaspy JA, Seeger LL, Choi Y, Schiepers C, Huang SC, Satyamurthy N, Barrio JR, Phelps ME. Whole body skeletal imaging with [18F]fluoride ion and PET.J Comput Assist Tomogr 1993; 17: 34–41.

    Google Scholar 

  27. Schiepers C, Broos P, Nuyts J, Mortelmans L, Verbruggen A, De Roo M. Positron emission tomography using18F- fluoride for the evaluation of femoral head osteonecrosis.Eur J Nucl Med 1994; 21: 762.

    Google Scholar 

  28. Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, Phelps ME, Hawkins RA. Bone metabolic activity measured with positron emission tomography and [18F]fluo-ride ion in renal osteodystrophy: correlation with bone histomorphometry.J Clin Endocrinol Metab 1993; 77: 949–55.

    Google Scholar 

  29. Wootton R, Reeve J, Veall N. The clinical measurement of skeletal blood flow.Clin Sci Mol Med 1976; 50: 261–268.

    Google Scholar 

  30. Nahmias C, Cockshott WP, Belbeck LW, Garnett ES. Measurement of absolute bone blood flow by positron emission tomography.Skeletal Radiol 1986; 15: 198–200.

    Google Scholar 

  31. Schoutens P, Bergmann P, Verhas M. Bone blood flow measured by85Sr microspheres and bone seeker clearances in the rat.Am JPhysiol 1979; 236(1): H1-H6.

    Google Scholar 

  32. Bergstedt HF, Körlof B, Lind MG, Wersäll J. Scintigraphy of human autologous rib transplants to a partially resected mandible.Scand J Plast Reconstr Surg 1978; 12: 151–156.

    Google Scholar 

  33. Frame JW, Edmondson HD, O'Kane MM. A radio-isotope study of the healing of mandibular bone grafts in patients.Br J Oral Surg 1983; 21: 277–289.

    Google Scholar 

  34. Lee HK, Markowitz J. 99m Technetium diphosphonate bone scanning of the mandibular bone graft.Oral Surg 1980, 49: 471–473.

    Google Scholar 

  35. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga. Reference values for trabecular and cortical vertebral bone density in single- and dual-energy quantitative computed tomography.Eur J Radiol 1989; 9: 75–80.

    Google Scholar 

  36. Li G, Bronk JT, Kelly PJ. Canine bone blood flow estimated with microspheres.J Orthop Res 1989; 7: 61–67.

    Google Scholar 

  37. Brunelli G, Guizzi PA, Battiston B, Vigasio A. A comparison of vascularized and nonvascularized bone transfer in rabbits: a roentgenographic, scintigraphic, and histologic evaluation.J Reconstr Microsurg 1987; 3: 301–307.

    Google Scholar 

  38. Doi K, Tominaga S, Shibata T. Bone grafts with microvascular anastomoses of vascular pedicles.J Bone Joint Surg [Am] 1977; 59: 809–815.

    Google Scholar 

  39. Nutton RW, Fitzgerald RH, Kelly PJ. Early dynamic bone-imaging as an indicator of osseous blood flow and factors affecting the uptake of99mTc hydroxymethylene diphosphonate in healing bone.J Bone Joint Surg [Am] 1985; 67: 763–770.

    Google Scholar 

  40. Delloye C, Verhelpen M, D'Hemricourt J, Govaerts B, Bourgois R. Morphometric and physical investigations of segmental cortical bone autografts and allografts in canine ulnar defects.Clin Orthop Relat Res 1992; 282: 273–292.

    Google Scholar 

  41. Misch CE, Dietsh F. Bone-grafting materials in implant dentistry. Implant Dentistry 1993; 2: 158–167.

    Google Scholar 

  42. Neukam FW, Scheller H, Günay H. Experimentelle und klinische Untersuchungen zur Auflagerungsosteoplastik in Kombination mit enossalen Implantaten.Z Zahndrztl Implantol 1989; 5: 235–241.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berding, G., Burchert, W., van den Hoff, J. et al. Evaluation of the incorporation of bone grafts used in maxillofacial surgery with [18F]fluoride ion and dynamic positron emission tomography. Eur J Nucl Med 22, 1133–1140 (1995). https://doi.org/10.1007/BF00800595

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00800595

Key words

Navigation