Skip to main content
Log in

Pyrolysis of Methane on a Resistive ZrO2/SiC Catalyst

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Dynamics of the methane pyrolysis on the ZrO2/SiC resistive catalyst was studied at various temperatures. At a temperature of 1300C, the conversion of methane passes through a maximum (55%) at the 60th minute, with the selectivity with respect to acetylene monotonically increasing during the whole experiment. The method of scanning electron microscopy with EDAX analysis demonstrated that, during the first 10 min of an experiment, the ZrO2/SiC is nearly fully carbonized at a temperature of 1300C. Also, a layered carbon coating is formed on the catalyst surface in the course of the experiment, with C2 hydrocarbons still present in pyrolysis products. It was shown that the carbon deposits formed on the catalyst surface are catalytically active in the process of acetylene formation. Regeneration of the catalyst does not fully restore its catalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saifullin, I.Sh. and Saifullin, R. I., Probl. Mashinostr. Avtom., 2018, pp. 136–144.

    Google Scholar 

  2. Arutyunov, V. S., Lapidus, A. L., Saifullin, I.Sh., and Rezunenko, B. I., Gaz. Prom-st', 2003, no. 3, pp. 76–80.

    Google Scholar 

  3. Chukeaw, T., Sringam, S., Chareonpanich, M., and Seubsai, A., Mol. Catal., 2019, vol. 470, pp. 40–47.

    Article  Google Scholar 

  4. Holmen, A., Catal. Today, 2009, vol. 142, pp. 2–8.

    Article  CAS  Google Scholar 

  5. An, H., Cheng, Y., Li, T., Li, Y., and Cheng, Y., Fuel Process. Technol., 2018, vol. 172, pp. 195–199. https://doi.org/10.1016/j.mcat.2019.03.021

    Article  CAS  Google Scholar 

  6. Moldoveanu, S. C., Pyrolysis of Organic Molecules, Elsevier, 2019, Pt. 2, pp. 35–161. https://doi.org/10.1016/j.cattod.2009.01.004

    Book  Google Scholar 

  7. Bidgoli, A. M., Ghorbanzadeh, A., Lotfalipour, R., Ehsan Roustaei, and Zakavi, M., Energy, 2017, vol. 125, pp. 705–715. https://doi.org/10.1016/j.energy.2017.02.144

    Article  Google Scholar 

  8. Hidaka, Y., Sato, K., Henmi, Y., Tanaka, H., and Inami, K., Combust. Flame, 1999, vol. 118, pp. 340–358. https://doi.org/10.1016/S0010-2180(99)00010-3

    Article  CAS  Google Scholar 

  9. Zherlitsyn, A. G., Shiyan, V. P., and Demchenko, P. V., Resour.-Effic. Technol., 2016, vol. 2, pp. 11–14. https://doi.org/10.1016/j.reffit.2016.04.001

    Google Scholar 

  10. Fincke, J. R., Anderson, R. P., Hyde, T., Detering, B. A., Wright, R., Bewley, R. L., Haggard, D. C., and Swank, W. D., Plasma Chem. Plasma Process., 2002, vol. 22, no. 1, pp. 107–138. https://doi.org/10.1023/A:1012944615974

    Article  Google Scholar 

  11. Rokstad, O. A., Olsvik, O., and Holmen, A., Stud. Surface Sci. Catal., 1991, vol. 61, pp. 533–539. https://doi.org/10.1016/S0167-2991(08)60120-2

    Article  CAS  Google Scholar 

  12. Sun, Qi., Tang, Yo., and Gavalas, G. R., Energy Fuels, 2000, no. 14, pp. 490–494. https://doi.org/10.1021/ef9901995

    Google Scholar 

  13. Sigaeva, S. S., Likholobov, V. A., and Tsyrul'nikov, P. G., Kinet. Catal., 2013, vol. 54, no. 2, pp. 199–206. https://doi.org/10.1134/S0023158413010126

    Article  CAS  Google Scholar 

  14. Porsin, A. V., Kulikov, A. V., Amosov, Yu.I., Rogozh-nikov, V. N., and Noskov, A. S., Theor. Found. Chem. Eng., 2014, vol. 48, pp. 397–403. https://doi.org/10.1134/S0040579514040241

    Article  CAS  Google Scholar 

  15. Sigaeva, S. S., Temerev, V. L., Borisov, V. A., and Tsyrul'nikov, P. G., Catal. Ind., 2015, vol. 7, no. 3, pp. 171–174. https://doi.org/10.1134/S2070050415030101

    Article  Google Scholar 

  16. Borisov, V. A., Sigaeva, S. S., Tsyrul'nikov, P. G., Trenikhin, M. V., Leont'eva, N. N., Slepterev, A. A., Kan, V. E., and Biryukov, M.Yu., Kinet. Catal., 2014, vol. 55, no. 3, pp. 319–326. https://doi.org/10.1134/S002315841403001X

    Article  CAS  Google Scholar 

  17. Sigaeva, S. S., Temerev, V. L., Kuznetsova, N. V., Tsyrul'nikov, P. G., Catal. Ind., 2017, vol. 9, no. 3, pp. 181–188. https://doi.org/10.1134/S2070050417030114

    Article  Google Scholar 

Download references

Funding

The study was carried out under the State assignment to the Center of new chemical technologies, Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, in conformity with the Program of basic research by State academies of sciences for the years of 2013–2020, direction V. 46, project V.46.2.5 (number of state registration in the Integrated State Record-keeping System of R&D and Technological activities for civil purposes, AAAA-A17-117021450096-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Sigaeva.

Additional information

Conflict of Interest

The authors state that they have no conflict of interest to be disclosed in the present communication.

Russian Text © The Author(s), 2019, published in Zhurnal Prikladnoi Khimii, 2019, Vol. 92, No. 9, pp. 1179–1187.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sigaeva, S.S., Shlyapin, D.A., Temerev, V.L. et al. Pyrolysis of Methane on a Resistive ZrO2/SiC Catalyst. Russ J Appl Chem 92, 1258–1265 (2019). https://doi.org/10.1134/S1070427219090118

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427219090118

Keywords

Navigation