Skip to main content
Log in

Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution

  • Research Article
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The lipophilic cation tetraphenylphosphonium (TPP+) is accumulated by human skin fibroblasts across both the plasma and mitochondrial membranes. We show here that TPP+ uptake is indeed greatly decreased under conditions leading to de-energization of mitochondria. The TPP+ accumulation in the presence of the proton ionophore FCCP has been used for determination of the plasma membrane potential across the plasma membrane, after correction for potential-independent binding of TPP+ to cellular components. Following this procedure, a value of 75 mV has been obtained. Through the amount of TPP+ released by FCCP treatment, an estimate of thein situ mitochondrial membrane potential has been made. Furthermore, we report that the mitochondrial component of TPP+ accumulation decreases with aging of fibroblast cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔΨm :

membrane potential across thein situ mitochondria

ΔΨp :

membrane potential across the plasma membrane

TPP+ :

tetraphenylphosphonium

HEPES:

N-2-hydroxyethylpiperazineN′-2-ethanesulfonic acid

FCCP:

carbonyl cyanidep-trifluoromethoxyphenylhydrazone

References

  • Åkerman, K. E. O. (1979).Biochim. Biophys. Acta 546, 341–347.

    Google Scholar 

  • Arslan, P., Di Virgilio, F., Beltrame, M., Tsien, R. G., and Pozzan, T. (1985).J. Biol. Chem. 260, 2719–2727.

    Google Scholar 

  • Bakeeva, L. E., Grinius, L. L., Jasaitis, A. A., Kuliene, V. V., Levitsky, O. D., Liberman, E. A., Severina, I. I., and Skulachev, V. P. (1970).Biochim. Biophys. Acta 216, 13–21.

    Google Scholar 

  • Brown, M. S., and Goldstein, J. L. (1976).Science 191, 150–154.

    Google Scholar 

  • Carruthers, A., and Melchior, D. L. (1986).Trend Biol. Sci. 11, 331–335.

    Google Scholar 

  • Davis, R. J., Brand, M. D., and Martin, B. R. (1981).Biochem. J. 196, 133–147.

    Google Scholar 

  • Eytan, G. D., Matheson, M. G., and Racker, E. (1976).J. Biol. Chem. 251, 6831–6837.

    Google Scholar 

  • Fahn, S., Koval, G. J., and Albers, R. W. (1966).J. Biol. Chem. 241, 1882–1889.

    Google Scholar 

  • Felber, S. M., and Brand, M. D. (1982).Biochem. J. 204, 577–585.

    Google Scholar 

  • Fiskum, G. (1985).Cell Calcium 6, 25–37.

    Google Scholar 

  • Gallo, R. I., Finkelstein, J. N., and Notter, R. H. (1984).Biochim. Biophys. Acta 771, 217–227.

    Google Scholar 

  • Gazzola, G. C., Dall'Asta, V., Franchi-Gazzola, R., and White, H. F. (1981).Anal. Biochem. 115, 368–374.

    Google Scholar 

  • Harsford, R. G. (1983).Biochim. Biophys. Acta 726, 41–80.

    Google Scholar 

  • Hayflick, L., and Moorehead, P. S. (1961).Exp. Cell Res. 25, 585–597.

    Google Scholar 

  • Hoek, J. B., Nicholls, D. G., and Williamson, J. R. (1980).J. Biol. Chem. 255, 1458–1464.

    Google Scholar 

  • Kiefer, H., Blume, A. J., and Kaback, H. R. (1980).Proc. Natl. Acad. Sci. USA 77, 2200–2204.

    Google Scholar 

  • Krämer, R., and Klingenberg, M. (1977).FEBS Lett. 82, 363–367.

    Google Scholar 

  • Landini, M. P., and Rugolo, M. (1984).J. Gen. Virol. 65, 2269–2272.

    Google Scholar 

  • Lichtshtein, D., Kaback, H. R., and Blume, A. J. (1979).Proc. Natl. Acad. Sci. USA 76, 650–654.

    Google Scholar 

  • Lowry, O. M., Rosenbrough, N. H., Farr, A. L., and Randall, R. J. (1951).J. Biol. Chem. 193, 265–275.

    Google Scholar 

  • Moolenaar, W. H., Harden, Y., de Laat, S. W., and Schlessinger, J. (1982).J. Biol. Chem. 257, 8502–8506.

    Google Scholar 

  • Nicholls, D. G. (1974).Eur. J. Biochem. 50, 305–315.

    Google Scholar 

  • Nicholls, D. G., Rugolo, M., Scott, I. G., and Meldolesi, J. (1982).Proc. Natl. Acad. Sci. USA 79, 7924–7928.

    Google Scholar 

  • Neufeld, E. F., Lim, T. W., and Shapiro, L. J. (1975).Ann. Rev. Biochem. 44, 357–376.

    Google Scholar 

  • Rodemann, H. P., and Bayreuther, K. (1986).Proc. Natl. Acad. Sci. USA 83, 2086–2090.

    Google Scholar 

  • Rugolo, M., Dolly, O., and Nicholls, D. G. (1986a).Biochem. J. 233, 519–523.

    Google Scholar 

  • Rugolo, M., Romeo, G., and Lenaz, G. (1986b).Biochem. Biophys. Res. Commun. 134, 233–239.

    Google Scholar 

  • Russel, S. B., Russel, J. D., and Truppin, J. S. (1984).J. Biol. Chem. 259, 11464–11470.

    Google Scholar 

  • Rydstrom, J., Kanner, N., and Racker, E. (1975).Biochem. Biophys. Res. Commun. 67, 831–839.

    Google Scholar 

  • Scott, I. D., and Nicholls, D. G. (1980).Biochem. J. 186, 21–23.

    Google Scholar 

  • Scott, I. D., Akerman, K. E. O., and Nicholls, D. G. (1980).Biochem. J. 192, 873–880.

    Google Scholar 

  • Seegmiller, J. E. (1976).Adv. Hum. Genet. 6, 75–81.

    Google Scholar 

  • Seemann, D., Furstenberger, G., and Marks, F. (1983).Eur. J. Biochem. 137, 485–494.

    Google Scholar 

  • Singer, T. P., and Gutman, M. (1971).Adv. Enzymol. 34, 79–153.

    Google Scholar 

  • Swift, M. R., and Todaro, G. L. (1968).J. Cell Physiol. 71, 61–63.

    Google Scholar 

  • Vik, S. B., Georgevich, G., and Capaldi, R. A. (1981).Proc. Natl. Acad. Sci. USA 78, 1456–1460.

    Google Scholar 

  • Villereal, M. L., and Cook, J. S. (1978).J. Biol. Chem. 253, 8257–8262.

    Google Scholar 

  • Yechiel, E., Henis, Y. I., and Barenholz, Y. (1986).Biochim. Biophys. Acta 859, 95–104.

    Google Scholar 

  • Zoccarato, F., Siliprandi, N., and Rugolo, M. (1983).Biochim. Biophys. Acta 734, 381–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rugolo, M., Lenaz, G. Monitoring of the mitochondrial and plasma membrane potentials in human fibroblasts by tetraphenylphosphonium ion distribution. J Bioenerg Biomembr 19, 705–718 (1987). https://doi.org/10.1007/BF00762304

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00762304

Key words

Navigation